ChemInform Abstract: Electron Transfer and Ion Pairing. Part 7. Contact Ion Pairs of Sulfur-Containing Radical Anions

ChemInform ◽  
1989 ◽  
Vol 20 (6) ◽  
Author(s):  
H. BOCK ◽  
P. HAENEL ◽  
H.-F. HERRMANN ◽  
H. TOM DIECK
1988 ◽  
Vol 43 (10) ◽  
pp. 1240-1246 ◽  
Author(s):  
Hans Bock ◽  
Peter Hänel ◽  
H.-F Herrmann ◽  
Heindirk torn Dieck

The structurally different radical anions M⊖ of peralkylated 1-sila-2,5-diazacyclopentane-3,4-dithione and of tetrakis(isopropylthio)-p-benzoquinone are generated by reduction with potassium/2.2.2-cryptand under aprotic conditions in THF solution. On addition of Li⊕B(C6H5)4⊖, both form hitherto elusive sulfur-containing contact ion pairs, which are characterized by their ESR/ENDOR spectra.


1990 ◽  
Vol 45 (8) ◽  
pp. 1197-1204 ◽  
Author(s):  
H. Bock ◽  
P. Hänel ◽  
H.-F. Herrmann

The radical anion of dimesityltetraketone (ERed, I = -0.40 V) is easily generated in THF by potassium mirror/[2.2.2]-cryptand reduction. Its contact ion pairs with Na⊕, Cs⊕ and Ba⊕⊕ counter cations, prepared in THF solution by single electron transfer from the respective metals, are characterized by their ESR/ENDOR spectra, which exhibit temperature-dependent metal couplings of aNa⊕ = 0.061 mT (190 K), aCs⊕ = 0.021 mT (190 K), and aBa⊕⊕ = 0.145 mT (295 K).


1992 ◽  
Vol 47 (4) ◽  
pp. 533-546 ◽  
Author(s):  
H. Bock ◽  
P. Hänel ◽  
H.-F. Herrmann

Abstract Reduction of naturally occurring para-and ortho-benzoquinone derivatives M to their respective radical anions M·⊖ can be accomplished under largely aprotic conditions either by cautious low-temperature reaction in THF containing an excess of (2.2.2) cryptand at a potassium mirror or by using the "mild" single electron transfer reagent tetrabutylammonium boranate R4N⊕BH4⊖ in DMF. On addition of soluble alkali tetraphenylborates Me⊕[B(C6H5)4]⊖ , their hitherto unknown radical ion pairs [M·⊖ Me⊕]· and/or triple ion radical cations [Me⊕M·⊖Me⊕]·⊕ form, which might be of biological relevance in molecular carrier and "turn off -turn on" switch processes. On addition of metal perchlorates Me⊕n(ClO4⊖)n with multiply charged counter cations Me⊕n the respective paramagnetic species [M·⊖Me⊕n]·(n-1)⊕ result. Assuming exclusive one-electron transfer reductions without any redox fragmentation reac­tions, ESR, ENDOR and GENERAL TRIPLE spectra are presented and discussed for the following radical anions and radical ion pairs: mitomycin C (M·⊖ and [M·⊖Mex⊕]·(x-1)⊕ with Me⊕ = Li⊕, Na⊕), streptonigrine (M·⊖ and [M·⊖Lix⊕]·(x-1)⊕), Entobex® (M·⊖ and [M·⊖Me⊕n]·(n-1)⊕ with Me⊕n = Li⊕, Na⊕, Cd⊕⊕, (H5C6)2Tl⊕) as well as brucinequinone ([M·⊖ Me⊕n]·(n-1)⊕ with Me⊕n = Li⊕, Cd⊕⊕, Pb⊕⊕, La⊕⊕⊕).


2020 ◽  
Author(s):  
James Sterling ◽  
Wenjuan Jiang ◽  
Wesley M. Botello-Smith ◽  
Yun L. Luo

Molecular dynamics simulations of hyaluronic acid and heparin brushes are presented that show important effects of ion-pairing, water dielectric decrease, and co-ion exclusion. Results show equilibria with electroneutrality attained through screening and pairing of brush anionic charges by cations. Most surprising is the reversal of the Donnan potential that would be expected based on electrostatic Boltzmann partitioning alone. Water dielectric decrement within the brush domain is also associated with Born hydration-driven cation exclusion from the brush. We observe that the primary partition energy attracting cations to attain brush electroneutrality is the ion-pairing or salt-bridge energy associated with cation-sulfate and cation-carboxylate solvent-separated and contact ion pairs. Potassium and sodium pairing to glycosaminoglycan carboxylates and sulfates consistently show similar abundance of contact-pairing and solvent-separated pairing. In these crowded macromolecular brushes, ion-pairing, Born-hydration, and electrostatic potential energies all contribute to attain electroneutrality and should therefore contribute in mean-field models to accurately represent brush electrostatics.


Sign in / Sign up

Export Citation Format

Share Document