multiply charged
Recently Published Documents


TOTAL DOCUMENTS

1527
(FIVE YEARS 85)

H-INDEX

74
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Yao Song ◽  
Xiangyu Pei ◽  
Huichao Liu ◽  
Jiajia Zhou ◽  
Zhibin Wang

Abstract. Accurate particle classification plays a vital role in aerosol studies. Differential mobility analyzer (DMA), centrifugal particle mass analyzer (CPMA) and aerodynamic aerosol classifier (AAC) are commonly used to select particles with a specific size or mass. However, multiple charging effect cannot be entirely avoided either using individual technique or using tandem system such as DMA-CPMA, especially when selecting soot particles with fractal structures. In this study, we demonstrate the transfer functions of DMA-CPMA and DMA-AAC systems, as well as the potential multiple charging effect. Our results show that the ability to remove multiply charged particles mainly depends on particles morphology and instruments setups of DMA-CPMA system. Using measurements from soot experiments and literature data, a general trend in the appearance of multiple charging effect with decreasing size when selecting aspherical particles was observed. Otherwise, our results indicated that the ability of DMA-AAC to resolve particles with multiple charges is mainly related to the resolutions of classifiers. In most cases, DMA-AAC can eliminate multiple charging effect regardless of the particle morphology, while particles with multiple charges can be selected when decreasing resolutions of DMA and AAC. We propose that the multiple charging effect should be reconsidered when using DMA-CPMA or DMA-AAC system in estimating size and mass resolved optical properties in the field and lab experiments.


2022 ◽  
Vol 92 (2) ◽  
pp. 315
Author(s):  
С.Ф. Белых ◽  
А.Д. Беккерман

The processes of ionization of atoms sputtered under bombardment of clean metal surface by singly and multiply charged ions with kinetic energy of several keV were studied. Within the framework of simple phenomenological model of ion formation, the relaxation of local electron excitation in metal was taking into account. Analytical expressions for estimation of ionization probability of sputtered atoms was obtain. It was shown, that in comparison with singly charged ions, bombardment of metals with multiply charged ions results to significant increase of ionization probability of sputtered atoms due to more efficient excitation of electrons and increase of relaxation time of this excitation.


2021 ◽  
pp. 156-160
Author(s):  
I. Cherkasova ◽  
V. Ternovsky ◽  
A. Nesterenko ◽  
D. Mironenko

A theoretical study of the spectroscopic characteristics of Zn-like multiply charged ions is carried out within the framework of the relativistic many-body perturbation theory. The optimized Dirac-Kohn-Shem approximation was chosen as the zero approximation of the relativistic perturbation theory. Optimization has been fulfilled by means of introduction of the parameters to the Kohn-Sham exchange and correlation potentials and further minimization of the gauge-non-invariant contributions into radiation width of atomic levels with using relativistic orbital set, generated by the corresponding zeroth approximation Hamiltonian.


2021 ◽  
Vol 84 (6) ◽  
pp. 866-873
Author(s):  
K. Argynova ◽  
N. Burtebayev ◽  
M. M. Chernyavsky ◽  
A. A. Gippius ◽  
N. S. Konovalova ◽  
...  

2021 ◽  
Vol 155 (14) ◽  
pp. 144301
Author(s):  
Yuzhong Yao ◽  
Jie Zhang ◽  
Rahul Pandey ◽  
Di Wu ◽  
Wei Kong ◽  
...  

2021 ◽  
Author(s):  
Mikhail Ivantsov

Abstract The present work as part of a known task of single-electron atom has been carried out, wherein one mathematical theorem is proved. Herewith an orbital electron was modeled, for which a certain parallelism exists between the highlighted ground state of the atom and special transition states in subatomic structure. Moreover, the ground state in unambiguous solution of fine-structure constant is obtained, where first transition state at the exceptional accordance with proton nucleus can be founded. For here, it is possible to relate the hyper-fine nuclear structure like the Lamb shift of hydrogen atom. In this substantiation of the task, multiply charged states were predicted for a hypothetical nucleus, as in the higher order of meson-boson transitions. The specified approach, in the terms of electric interaction, may be beyond a scope of the existing boson classification, supposedly for the carriers of electroweak interaction.


Sign in / Sign up

Export Citation Format

Share Document