ChemInform Abstract: Electron Transfer and Ion Pairing. Part 15. Radical Anion and Radical Contact Ion Pairs of Dimesityl Tetraketone

ChemInform ◽  
1990 ◽  
Vol 21 (48) ◽  
Author(s):  
H. BOCK ◽  
P. HAENEL ◽  
H.-F. HERRMANN
1990 ◽  
Vol 45 (8) ◽  
pp. 1197-1204 ◽  
Author(s):  
H. Bock ◽  
P. Hänel ◽  
H.-F. Herrmann

The radical anion of dimesityltetraketone (ERed, I = -0.40 V) is easily generated in THF by potassium mirror/[2.2.2]-cryptand reduction. Its contact ion pairs with Na⊕, Cs⊕ and Ba⊕⊕ counter cations, prepared in THF solution by single electron transfer from the respective metals, are characterized by their ESR/ENDOR spectra, which exhibit temperature-dependent metal couplings of aNa⊕ = 0.061 mT (190 K), aCs⊕ = 0.021 mT (190 K), and aBa⊕⊕ = 0.145 mT (295 K).


1988 ◽  
Vol 43 (10) ◽  
pp. 1240-1246 ◽  
Author(s):  
Hans Bock ◽  
Peter Hänel ◽  
H.-F Herrmann ◽  
Heindirk torn Dieck

The structurally different radical anions M⊖ of peralkylated 1-sila-2,5-diazacyclopentane-3,4-dithione and of tetrakis(isopropylthio)-p-benzoquinone are generated by reduction with potassium/2.2.2-cryptand under aprotic conditions in THF solution. On addition of Li⊕B(C6H5)4⊖, both form hitherto elusive sulfur-containing contact ion pairs, which are characterized by their ESR/ENDOR spectra.


2020 ◽  
Author(s):  
James Sterling ◽  
Wenjuan Jiang ◽  
Wesley M. Botello-Smith ◽  
Yun L. Luo

Molecular dynamics simulations of hyaluronic acid and heparin brushes are presented that show important effects of ion-pairing, water dielectric decrease, and co-ion exclusion. Results show equilibria with electroneutrality attained through screening and pairing of brush anionic charges by cations. Most surprising is the reversal of the Donnan potential that would be expected based on electrostatic Boltzmann partitioning alone. Water dielectric decrement within the brush domain is also associated with Born hydration-driven cation exclusion from the brush. We observe that the primary partition energy attracting cations to attain brush electroneutrality is the ion-pairing or salt-bridge energy associated with cation-sulfate and cation-carboxylate solvent-separated and contact ion pairs. Potassium and sodium pairing to glycosaminoglycan carboxylates and sulfates consistently show similar abundance of contact-pairing and solvent-separated pairing. In these crowded macromolecular brushes, ion-pairing, Born-hydration, and electrostatic potential energies all contribute to attain electroneutrality and should therefore contribute in mean-field models to accurately represent brush electrostatics.


1994 ◽  
Vol 49 (4) ◽  
pp. 529-541 ◽  
Author(s):  
Hans Bock ◽  
Andreas John ◽  
Markus Kleine ◽  
Christian Näther ◽  
Jan W. Bats

Tetraphenyl-p-benzoquinone, according to its single crystal structure, shows some steric congestion: its quinone ring is distorted by 7° to a chair conformation, and its phenyl substituents are twisted around their CC axes between 46° and 72°. The half-wave reduction potentials of -0.57 and -1.25 V in acetonitrile confirm negligible π interaction of the phenyl substituents. Addition of alkalimetal tetraphenylborate salts lowers the second reduction potential due to contact ion formation, which can be confirmed by UV/VIS spectra recorded under aprotic conditions. Extensive ESR/ENDOR investigations prove the formation of the following species in THF solution: Tetraphenyl-p-benzosemiquinone radical anion contact ion pairs [M·⊖ Me⊕solv]' (Me⊕: Li⊕, Na⊕, Rb⊕, Cs⊕) and contact triple ion radical cations both with identical cations [M·⊖ (Me⊕solv)2]·⊕ (Me⊕: Li⊕, Na⊕, Cs⊕) and different cations [M·⊖ (Li⊕solv)(Me⊕solv)]·⊕ (Me⊕: Na⊕, Cs⊕). Addition of crown ethers can lead to external solvation of the Me⊕ counter cations, whereas cryptands form internal solvation complexes. The radical anion of 2,6-diphenyl-p-benzosemiquinone adds cations at its phenyl-free molecular half. The radical anion salt [tetraphenyl-p-benzosemiquinone·⊖ (Na⊕(tetrahydropyrane) 2)] could be crystallized and its structure determined at 200 K. In agreement with the Hirota sign rules for contact radicals in solution, the Na⊕ ion is found 62 pm above the π plane and 29° outside the axis of the CO bound, which is elongated due to one-electron reduction by 5 pm to 127 pm.


2020 ◽  
Vol 22 (21) ◽  
pp. 12140-12153 ◽  
Author(s):  
Federico Sebastiani ◽  
Ana Vila Verde ◽  
Matthias Heyden ◽  
Gerhard Schwaab ◽  
Martina Havenith

A combined THz and simulation study on MgSO4 find no contact ion pairs in highly concentrated solutions.


Sign in / Sign up

Export Citation Format

Share Document