ChemInform Abstract: Hydrolytic Precipitation of Solid Solutions of Iron(III) and Gallium( III) with Admixture of Fluoride Ions.

ChemInform ◽  
2010 ◽  
Vol 22 (36) ◽  
pp. no-no
Author(s):  
F. KAMOUN ◽  
M. LORENZ ◽  
G. KEMPE ◽  
F. PEGER
2019 ◽  
Vol 85 (5) ◽  
pp. 60-68
Author(s):  
Yuliay Pogorenko ◽  
Anatoliy Omel’chuk ◽  
Roman Pshenichny ◽  
Anton Nagornyi

In the system RbF–PbF2–SnF2 are formed solid solutions of the heterovalent substitution RbxPb0,86‑xSn1,14F4-x (0 < x ≤ 0,2) with structure of β–PbSnF4. At x > 0,2 on the X-ray diffractograms, in addition to the basic structure, additional peaks are recorded that do not correspond to the reflexes of the individual fluorides and can indicate the formation of a mixture of solid solutions of different composition. For single-phase solid solutions, the calculated parameters of the crystal lattice are satisfactorily described by the Vegard rule. The introduction of ions of Rb+ into the initial structure leads to an increase in the parameter a of the elementary cell from 5.967 for x = 0 to 5.970 for x = 0.20. The replacement of a part of leads ions to rubium ions an increase in electrical conductivity compared with β–PbSnF4 and Pb0.86Sn1.14F4. Insignificant substitution (up to 3.0 mol%) of ions Pb2+ at Rb+ at T<500 K per order of magnitude reduces the conductivity of the samples obtained, while the nature of its temperature dependence is similar to the temperature dependence of the conductivity of the sample β-PbSnF4. By replacing 5 mol. % of ions with Pb2+ on Rb+, the fluoride ion conductivity at T> 450 K is higher than the conductivity of the initial sample Pb0,86Sn1,14F4 and at temperatures below 450 K by an order of magnitude smaller. With further increase in the content of RbF the electrical conductivity of the samples increases throughout the temperature range, reaching the maximum values at x≥0.15 (σ573 = 0.34–0.41 S/cm, Ea = 0.16 eV and σ373 = (5.34–8.16)•10-2 S/cm, Ea = 0.48–0.51 eV, respectively). In the general case, the replacement of a part of the ions of Pb2+ with Rb+ to an increase in the electrical conductivity of the samples throughout the temperature range. The activation energy of conductivity with an increase in the content of RbF in the low-temperature region in the general case increases, and at temperatures above 400 K is inversely proportional decreasing. The nature of the dependence of the activation energy on the concentration of the heterovalent substituent and its value indicate that the conductivity of the samples obtained increases with an increase in the vacancies of fluoride ions in the structure of the solid solutions.


Author(s):  
Yuliia Pohorenko ◽  
Roman Pshenychnyi ◽  
Tamara Pavlenko ◽  
Anatoliy Omel’chuk ◽  
Volodymyr Trachevskyi

The electrical conductivity of solid solutions with tetragonal syngony formed in 0.86(xKF - (1-x)PbF2) - 1.14SnF2 systems has been studied by 19F NMR and impedance spectroscopy. It was found that the Pb0.86Sn1.14F4 phase is characterized by better values of fluoride-ion conductivity than the ?-PbSnF4 compound. It was found that the substitution of Pb2+ ions by K+ up to ? = 0.07 in the structure of Pb0.86Sn1.14F4 contributes to increase in electrical conductivity by an order of magnitude relative to the original Pb0.86Sn1.14F4. The sample of the composition K0.03Pb0.83Sn1.14F3.97 has the highest electrical conductivity (?600 = 0.38 S cm-1, ?330 = 0.01 S cm-1). The fluoride anions in the synthesized samples of KxPb0.86-xSn1.14F4-x solid solutions occupy three structurally nonequivalent positions. It is shown that with increasing temperature, there is a redistribution of fluorine anions between positions in the anion lattice, which results in an increase in the concentration of highly mobile fluoride ions, which determine the electrical conductivity of samples.


2021 ◽  
Vol 87 (1) ◽  
pp. 13-22
Author(s):  
Yuliia Pohorenko ◽  
Anatoliy Omel’chuk ◽  
Anton Nagornyi

In the PbF2 – SmF3 – SnF2 system, he­tero­valent substitution solid solutions Pb0.86-xSmxSn1,14F4+x (0 < x ≤ 0.15) with the structure β-PbSnF4 are formed. The unit cell parameters of solid solutions are satisfactorily described by Vegard’s rules. The electrical conductivity of the obtained samples decreases in the entire temperature range compared to Pb0.86Sn1.14F4  due to the introduction of SmF3 (at x≤0.08) in the initial structure. It brings them closer to the values of the electrical conductivity of β-PbSnF4. However, at temperatures above 520 K, the electrical conductivity of solid solutions is almost twice higher than that of the initial phase Pb0.86Sn1.14F4 (σ553 = 0.054 and 0.023 S/cm, respectively). The elect­rical conductivity of solid solutions increases with the Sm3+ content, reaching maximum values at x = 0.1. The Pb0.76Sm0.10Sn1.14F4.10 phases have the highest electrical conductivity and the lowest activation energy (σ373 = 1.08 • 10-2 S/cm). The substitution of Pb2+ ions by Sm3+ ions in the fluoride-conducting phase Pb0,86Sn1,14F4 helps to increase the electrical conductivity by almost an order of magnitude compared to the initial phase and by two orders of magnitude compared to β-PbSnF4. The ionic conductivity activation energy increases in the low-temperature region generally with increasing the SmF3 content and decreases proportionally at temperatures above 430 K. The nature of the dependence of the activation energy on the concentration of the heterovalent substituent and its value indicate that the conductivity of the obtained samples is provided by highly mobile interstitial fluoride ions in the structure of solid solutions. The Hebb-Wagner polarization saturation method was used to determine the electronic conductivity of the samples. It is 2 orders of magnitude lower than the ionic one. The fluorine ion transfer numbers are 0.99 and do not depend on the substituent content.


1989 ◽  
Vol 50 (21) ◽  
pp. 3223-3232 ◽  
Author(s):  
G. Le Bastard ◽  
R. Granger ◽  
S. Rolland ◽  
Y. Marqueton ◽  
R. Triboulet

Sign in / Sign up

Export Citation Format

Share Document