ChemInform Abstract: Carbons for Lithium Battery Applications Prepared Using Sepiolite as an Inorganic Template.

ChemInform ◽  
2010 ◽  
Vol 31 (3) ◽  
pp. no-no
Author(s):  
G. Sandi ◽  
K. A. Carrado ◽  
R. E. Winans ◽  
C. S. Johnson ◽  
R. Csencsits
1999 ◽  
Vol 146 (10) ◽  
pp. 3644-3648 ◽  
Author(s):  
G. Sandí ◽  
K. A. Carrado ◽  
R. E. Winans ◽  
C. S. Johnson ◽  
R. Csencsits

2007 ◽  
Vol 2007 (suppl_26) ◽  
pp. 483-488
Author(s):  
P. S. Whitfield ◽  
I. J. Davidson ◽  
P. W. Stephens ◽  
L. M. D. Cranswick ◽  
I. P. Swainson

1970 ◽  
Author(s):  
M. EISENBERG ◽  
K. WONG
Keyword(s):  

2021 ◽  
Author(s):  
Jiahan Song ◽  
Yubing Si ◽  
Wei Guo ◽  
Donghai Wang ◽  
Yongzhu Fu
Keyword(s):  

Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1448
Author(s):  
Nam-Gyu Lim ◽  
Jae-Yeol Kim ◽  
Seongjun Lee

Battery applications, such as electric vehicles, electric propulsion ships, and energy storage systems, are developing rapidly, and battery management issues are gaining attention. In this application field, a battery system with a high capacity and high power in which numerous battery cells are connected in series and parallel is used. Therefore, research on a battery management system (BMS) to which various algorithms are applied for efficient use and safe operation of batteries is being conducted. In general, maintenance/replacement of multi-series/multiple parallel battery systems is only possible when there is no load current, or the entire system is shut down. However, if the circulating current generated by the voltage difference between the newly added battery and the existing battery pack is less than the allowable current of the system, the new battery can be connected while the system is running, which is called hot swapping. The circulating current generated during the hot-swap operation is determined by the battery’s state of charge (SOC), the parallel configuration of the battery system, temperature, aging, operating point, and differences in the load current. Therefore, since there is a limit to formulating a circulating current that changes in size according to these various conditions, this paper presents a circulating current estimation method, using an artificial neural network (ANN). The ANN model for estimating the hot-swap circulating current is designed for a 1S4P lithium battery pack system, consisting of one series and four parallel cells. The circulating current of the ANN model proposed in this paper is experimentally verified to be able to estimate the actual value within a 6% error range.


Author(s):  
Muhammad Amirul Aizat Mohd Abdah ◽  
Muhammad Ramiey Rejab ◽  
Marliyana Mokhtar ◽  
Kamaruzaman Sopian ◽  
Azizan Ahmad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document