positive electrode
Recently Published Documents


TOTAL DOCUMENTS

1401
(FIVE YEARS 359)

H-INDEX

87
(FIVE YEARS 17)

Author(s):  
Roby Gauthier ◽  
Aidan Luscombe ◽  
Toby Bond ◽  
Michael Bauer ◽  
Michel Johnson ◽  
...  

Abstract Lithium-ion cells testing under different state of charge ranges, C-rates and cycling temperature have different degrees of lithium inventory loss, impedance growth and active mass loss. Here, a large matrix of polycrystalline NMC622/natural graphite Li-ion pouch cells were tested with seven different state of charge ranges (0-25, 0-50, 0-75, 0-100, 75-100, 50-100 and 25-100%), three different C-rates and at two temperatures. First, capacity fade was compared to a model developed by Deshpande and Bernardi. Second, after 2.5 years of cycling, detailed analysis by dV/dQ analysis, lithium-ion differential thermal analysis, volume expansion by Archimedes’ principle, electrode stack growth, ultrasonic transmissivity and x-ray computed tomography were undertaken. These measurements enabled us to develop a complete picture of cell aging for these cells. This then led to an empirical predictive model for cell capacity loss versus SOC range and calendar age. Although these particular cells exhibited substantial positive electrode active mass loss, this did not play a role in capacity retention because the cells were anode limited during full discharge under all the tests carried out here. However, the positive electrode mass loss was strongly coupled to positive electrode swelling and electrolyte “unwetting” that would eventually cause dramatic failure.


2022 ◽  
pp. 59-80
Author(s):  
Akira Yano ◽  
Masahiro Shikano ◽  
Hikari Sakaebe

2021 ◽  
pp. 2103067
Author(s):  
Chenxi Geng ◽  
Divya Rathore ◽  
Dylan Heino ◽  
Ning Zhang ◽  
Ines Hamam ◽  
...  

Author(s):  
M. Alam Khan ◽  
Sunil Singh

We report here a combination of transition metal-based ternary sodium magnate layered cathodes with the compositions of Na0.8Fe0.4Mn0.3Co0.2O2, Na0.8Fe0.4Mn0.3Ni0.2O2, Na0.8Fe0.4Mn0.3V0.2O2, Na0.8Fe0.4Mn0.3Ti0.2O2, in order to elucidate the precise metal contents for the superb performing positive electrode. Based on their stoichiometry, the transition metal combination of Na0.8Fe0.4Mn0.3Co0.2O2, O3-type crystal structure with R3m space group possess superior electrochemical behavior under the test of sodium-ion battery. When the charge-discharge capacities in the range of 2.0-4.2 V at 0.1 C are measured, it shows the comparatively higher performance of the first and second charge capacities of 162 mAhg-1, 170 mAhg-1 and discharge capacities of 157 mAhg-1, 154 mAhg-1, respectively. Moreover, it was remarkable to observe that the increasing/decreasing Co constituent substantially affects the performance and stability, but using the ternary combination in cathodes, a substantial reduction of Jahn-Teller distortion and increased biphasic characteristics were observed. The as-synthesized samples were characterized by FE-SEM, XRD, charge-discharge curve, EIS and cyclic voltammograms.


Sign in / Sign up

Export Citation Format

Share Document