Distillation Design and Control Using Aspen Simulation. Von W. L. Luyben

2015 ◽  
Vol 87 (3) ◽  
pp. 312-312 ◽  
Author(s):  
G. Fieg
2020 ◽  
Author(s):  
Vandana Sakhre

In this chapter, previous studies on reactive distillation process control including control using conventional as well as soft sensor control, membrane assisted reactive distillation design and simulation, estimation and control are discussed. The review of literature in different dimensions is carried out to explore the opportunities in the field of research work. The chapter is focused on dynamics and control of Reactive distillation, its control using Conventional Techniques, Model Predictive Control MPC), Reactive Distillation using Soft Sensors/Soft Controllers, Membrane assisted reactive distillation, Biodiesel in Reactive Divided Wall Column: Design and Control and Membrane reactive divided wall column. These control techniques are proposed and analyzed by many researchers. These techniques have potential use in process industries to have better soft sensor control of nonlinear processes.


Author(s):  
R. R. Dils ◽  
P. S. Follansbee

Electric fields have been applied across oxides growing on a high temperature alloy and control of the oxidation of the material has been demonstrated. At present, three-fold increases in the oxidation rate have been measured in accelerating fields and the oxidation process has been completely stopped in a retarding field.The experiments have been conducted with an iron-base alloy, Pe 25Cr 5A1 0.1Y, although, in principle, any alloy capable of forming an adherent aluminum oxide layer during oxidation can be used. A specimen is polished and oxidized to produce a thin, uniform insulating layer on one surface. Three platinum electrodes are sputtered on the oxide surface and the specimen is reoxidized.


Author(s):  
D. M. DePace

The majority of blood vessels in the superior cervical ganglion possess a continuous endothelium with tight junctions. These same features have been associated with the blood brain barrier of the central nervous system and peripheral nerves. These vessels may perform a barrier function between the capillary circulation and the superior cervical ganglion. The permeability of the blood vessels in the superior cervical ganglion of the rat was tested by intravenous injection of horseradish peroxidase (HRP). Three experimental groups of four animals each were given intravenous HRP (Sigma Type II) in a dosage of.08 to.15 mg/gm body weight in.5 ml of.85% saline. The animals were sacrificed at five, ten or 15 minutes following administration of the tracer. Superior cervical ganglia were quickly removed and fixed by immersion in 2.5% glutaraldehyde in Sorenson's.1M phosphate buffer, pH 7.4. Three control animals received,5ml of saline without HRP. These were sacrificed on the same time schedule. Tissues from experimental and control animals were reacted for peroxidase activity and then processed for routine transmission electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document