oxidation process
Recently Published Documents


TOTAL DOCUMENTS

3515
(FIVE YEARS 972)

H-INDEX

77
(FIVE YEARS 21)

Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 53
Author(s):  
Surisa Phornvillay ◽  
Suwanan Yodsarn ◽  
Jiraporn Oonsrithong ◽  
Varit Srilaong ◽  
Nutthachai Pongprasert

Microbial contamination commonly occurs in microgreens due to contaminated seeds. This study investigated the decontamination effects of water wash (control), 5% hydrogen peroxide (H2O2), UV-C (36 watts), advanced oxidation process (AOP; H2O2 + UV-C), and improved AOP by combination with microbubbles (MBs; H2O2 + MBs and H2O2 + UV-C + MBs) on microbial loads, seeds’ viability, and physio-biochemical properties of microgreens from corresponding roselle seeds. Results showed that H2O2 and AOP, with and without MBs, significantly reduced total aerobic bacteria, coliforms, Escherichia coli (E. coli), and molds and yeast log count in seeds as compared to the control. Improved AOP treatment of H2O2 + UV-C + MBs significantly augmented antimicrobial activity against total bacteria and E. coli (not detected,) as compared to control and other treatments due to the formation of the highest hydroxy radicals (5.25 × 10−13 M). Additionally, H2O2 and combined treatments promoted seed germination, improved microbiological quality, total phenolic, flavonoids, and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) activity of the grown microgreens. Ascorbic acid content was induced only in microgreens developed from H2O2-treated seeds. Single UV-C treatment was ineffective to inactivate the detected microorganism population in seeds. These findings demonstrated that improved AOP treatment (H2O2 + UV-C + MBs) could potentially be used as a new disinfection technology for seed treatment in microgreens production.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 57
Author(s):  
Daniela González-Varela ◽  
Daniel G. Araiza ◽  
Gabriela Díaz ◽  
Heriberto Pfeiffer

A series of LaNiO3 materials were synthesized by the EDTA–citrate complexing method, modifying different physicochemical conditions. The LaNiO3 samples were calcined between 600 and 800 °C and characterized by XRD, SEM, XPS, CO-TPD, TG, DT, and N2 adsorption. The results evidence that although all the samples presented the same crystal phase, LaNiO3 as expected, some microstructural and superficial features varied as a function of the calcination temperature. Then, LaNiO3 samples were tested as catalysts of the CO oxidation process, a reaction never thoroughly analyzed employing this material. The catalytic results showed that LaNiO3 samples calcined at temperatures of 600 and 700 °C reached complete CO conversions at ~240 °C, while the sample thermally treated at 800 °C only achieved a 100% of CO conversion at temperatures higher than 300 °C. DRIFTS and XRD were used for studying the reaction mechanism and the catalysts’ structural stability, respectively. Finally, the obtained results were compared with different Ni-containing materials used in the same catalytic process, establishing that LaNiO3 has adequate properties for the CO oxidation process.


2022 ◽  
Author(s):  
Wenbin Sun ◽  
Jiechen Li ◽  
Wen Gao ◽  
Luyao Kang ◽  
Fengcai Lei ◽  
...  

The electrocatalytic urea oxidation reaction (UOR) has attracted substantial research interests during the past few years owing to its critical role in coupled electrochemical systems for energy conversion, for example,...


Sign in / Sign up

Export Citation Format

Share Document