extractive distillation
Recently Published Documents


TOTAL DOCUMENTS

754
(FIVE YEARS 217)

H-INDEX

46
(FIVE YEARS 15)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 165
Author(s):  
Hao Qin ◽  
Zihao Wang ◽  
Zhen Song ◽  
Xiang Zhang ◽  
Teng Zhou

The separation of 1,3-butadiene (1,3-C4H6) and 1-butene (n-C4H8) is quite challenging due to their close boiling points and similar molecular structures. Extractive distillation (ED) is widely regarded as a promising approach for such a separation task. For ED processes, the selection of suitable entrainer is of central importance. Traditional ED processes using organic solvents suffer from high energy consumption. To tackle this issue, the utilization of ionic liquids (ILs) can serve as a potential alternative. In this work, a high-throughput computational screening of ILs is performed to find proper entrainers, where 36,260 IL candidates comprising of 370 cations and 98 anions are involved. COSMO-RS is employed to calculate the infinite dilution extractive capacity and selectivity of the 36,260 ILs. In doing so, the ILs that satisfy the prespecified thermodynamic criteria and physical property constraints are identified. After the screening, the resulting IL candidates are sent for rigorous process simulation and design. 1,2,3,4,5-pentamethylimidazolium methylcarbonate is found to be the optimal IL solvent. Compared with the benchmark ED process where the organic solvent N-methyl-2-pyrrolidone is adopted, the energy consumption is reduced by 26%. As a result, this work offers a new IL-based ED process for efficient 1,3-C4H6 production.


2022 ◽  
pp. 65-154
Author(s):  
Zhigang Lei ◽  
Chengna Dai ◽  
Biaohua Chen

Sign in / Sign up

Export Citation Format

Share Document