Utilization of Sugar Factory Pressmud Waste for Upgrading the Efficiency of Waste Stabilization Ponds

2021 ◽  
pp. 2000474
Author(s):  
Ramazan Vagheei
1995 ◽  
Vol 31 (12) ◽  
pp. 285-290 ◽  
Author(s):  
J. I. Oragui ◽  
H. Arridge ◽  
D. D. Mara ◽  
H. W. Pearson ◽  
S. A. Silva

Rotavirus removal in waste stabilization ponds is a relatively slow process: in a series of ten ponds (a 1-d anaerobic pond followed by nine 2-d ponds) its numbers were reduced from 1.4 × 105 per litre to zero, and in an “innovative” series (a 1-day anaerobic pond, 3-d facultative pond, 3.8-d, 3-d and 5-d maturation ponds) from 5.1 × 104 per litre to <5 per litre. Faecal coliforms were better indicators of rotaviruses than was Clostridium perfringens .


1995 ◽  
Vol 31 (12) ◽  
pp. 91-101 ◽  
Author(s):  
Y. Racault ◽  
C. Boutin ◽  
A. Seguin

In 1992, a survey was conducted on the performance of waste stabilization ponds in France. The data selected come from a sample of 178 ponds, with an average capacity of 600 p.e., throughout France. For each plant, one or several input--output load measurements over a 24-h period are available. The average organic load level received is approximately 25 kg BOD/ha.d, representing 50% of the nominal load. The quality of the treated water is presented based on the type of sewerage system feeding the ponds. The results appear dispersed, however; in 70% of the cases the concentrations in COD and BOD on filtered samples are under 120 mg/l and 40 mg/l, respectively, and the concentration in TSS under 120 mg/l (discharge standards in France for waste stabilization ponds). The reductions in nitrogen and phosphorus nutrients are on average from 60% to 70%. The influence of different parameters (sewerage system type, organic load, season, age of plant, etc.) was studied. The results appear noticeably worse when the ponds receive wastewater from a strictly separate sewerage system.


Heliyon ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e06207
Author(s):  
Joshua N. Edokpayi ◽  
John O. Odiyo ◽  
Oluwaseun E. Popoola ◽  
Titus A.M. Msagati

2000 ◽  
Vol 42 (10-11) ◽  
pp. 23-34 ◽  
Author(s):  
T. Nameche ◽  
O. Dufayt ◽  
H. El Ouarghi ◽  
J.L. Vasel

AbstractThe Bertrix wastewater treatment plant was designed and built for experimental purposes, especially for comparing aerated lagoons and stabilization ponds in a temperate climate. This plant was designed for a capacity of 7500 inhab. eq, and aerated lagoons were dimensioned to eliminate 50% of the organic load. The remaining load has to be degraded in the series of stabilization ponds. In this paper we shall present the plant in more detail and the results of a 3-year study, i.e., 79 rounds of samples for each of the five ponds under study, placing emphasis on the performances of aerated lagoons and stabilization ponds. Principal components analysis (of inflow and outflow) of aerated lagoons and stabilization ponds will be presented and commented on. The most important factors are the hydraulic loading and the concentrations. Seasonal variations appear only in the basins' temperatures. The fates of nitrogen compounds are quite different from those of organic compounds, confirming that a high efficiency of nitrogen removal is difficult to achieve, especially for short residence times (less than eight days). A few other conclusions of our study are given below: The ponds' hydrodynamics has been studied and a mathematical model is now available If there is no stratification in the ponds, a thermal model can be proposed where the mean absolute difference is 0.7°C±0.2. In the system under study, the contribution of algal biomass to the system is very small.


Sign in / Sign up

Export Citation Format

Share Document