Rotavirus removal in experimental waste stabilization pond systems with different geometries and configurations

1995 ◽  
Vol 31 (12) ◽  
pp. 285-290 ◽  
Author(s):  
J. I. Oragui ◽  
H. Arridge ◽  
D. D. Mara ◽  
H. W. Pearson ◽  
S. A. Silva

Rotavirus removal in waste stabilization ponds is a relatively slow process: in a series of ten ponds (a 1-d anaerobic pond followed by nine 2-d ponds) its numbers were reduced from 1.4 × 105 per litre to zero, and in an “innovative” series (a 1-day anaerobic pond, 3-d facultative pond, 3.8-d, 3-d and 5-d maturation ponds) from 5.1 × 104 per litre to <5 per litre. Faecal coliforms were better indicators of rotaviruses than was Clostridium perfringens .

1986 ◽  
Vol 18 (10) ◽  
pp. 31-35 ◽  
Author(s):  
J. I. Oragui ◽  
T. P. Curtis ◽  
S. A. Silva ◽  
D. D. Mara

The removal of excreted bacteria (faecal coliforms, faecal streptococci, Clostridium perfringens, total and sorbitol-fermenting bifidobacteria, salmonellae and thermophilic campylobacters) and viruses (enterovirus and rotavirus) in a series of deep anaerobic, facultative and maturation ponds (depth range: 2.8 - 3.4 m), with an overall retention time of 21 days and a mean mid-depth temperature of 27°C, was studied. Thermophilic campylobacters, bifidobacteria and salmonellae were not detected after 11, 16 and 21 days' retention respectively. Faecal coliforms, faecal streptcocci and Cl. perfringens were reduced by 4, 4 and 2 orders of magnitude respectively, and enteroviruses and rotaviruses both by 3 orders. The results indicate that pathogen removal in deep ponds is similar to that in ponds of normal depth.


1987 ◽  
Vol 19 (3-4) ◽  
pp. 569-573 ◽  
Author(s):  
J. I. Oragui ◽  
T. P. Curtis ◽  
S. A. Silva ◽  
D. D. Mara

The removal of excreted bacteria (faecal coliforms, faecal streptococci, Clostridium perfringens, total and sorbitol-fermenting bifidobacteria, salmonellae and thermophilic campylobacters) and viruses (enterovirus and rotavirus) in a series of deep anaerobic, facultative and maturation ponds (depth range: 2.8 - 3.4 m), with an overall retention time of 21 days and a mean mid-depth temperature of 27°C, was studied. Thermophilic campylobacters, bifidobacteria and salmonellae were not detected after 11, 16 and 21 days' retention respectively. Faecal coliforms, faecal streptcocci and Cl. perfringens were reduced by 4, 4 and 2 orders of magnitude respectively, and enteroviruses arid rotaviruses both by 3 orders. The results indicate that pathogen removal in deep ponds is similar to that in ponds of normal depth.


2019 ◽  
Vol 15 (1) ◽  
pp. 11-25
Author(s):  
Adel S. Faskol ◽  
Gabriel Racoviteanu

Abstract This paper investigates the determined the required log reductions for human intestinal helminth eggs by waste stabilization ponds as simulation as assessing of mitigating health risk to satisfy practice WHO, 2006 guidelines for the safe use of wastewater in agriculture (≤ 0.1 helminth egg/L) to protect the health of children under 15 years was the development of MATLAB, a computer program based waste stabilization ponds design based on parameter uncertainty and 10,000-trial Monte Carlo simulations were developed for a series of anaerobic, facultative and maturation ponds based on 95%-ile of effluent (≤ 0.1 helminth egg/L) which the result in a health-based target. Whereas the influent of the helminth eggs (Nematode) was (932.500 eggs/L). While the treatment provided (100 % reduction/removal) for the overall treatment process with total hydraulic retention time in climatic conditions of Libya it took 36.207 days in the anaerobic pond, facultative pond, first maturation pond and one of the subsequent maturation pond.


1987 ◽  
Vol 19 (12) ◽  
pp. 195-203 ◽  
Author(s):  
T. Wood

The objective of this paper is to demonstrate the importance of choosing an appropriate mathematical model when analyzing the data from laboratory-scale studies of waste stabilization ponds. Two case studies are presented based on work by Thirumurthi and Nashashibi (1967) and Uhlmann et al (1983), both using semicontinuous methods of experimentation involving the addition of discrete volumes of feed at regular intervals. In both cases the authors have used mathematical models of continuous processes to analyse their results. This paper shows how semicontinuous models can be used in both studies, leading to significant differences in interpretation of the data; in the first case study this relates to the determination of rate constants and, in the second case study, to the determination of an appropriate model to describe hydraulic mixing. Each case study concludes with a discussion of the significance of the semicontinuous interpretation in the context of waste stabilization pond design.


2005 ◽  
Vol 51 (12) ◽  
pp. 75-81 ◽  
Author(s):  
C.G. Banda ◽  
P.A. Sleigh ◽  
D.D. Mara

Two PC-based waste stabilization pond design procedures, based on parameter uncertainty and 10,000-trial Monte Carlo simulations, were developed for a series of anaerobic, facultative and maturation ponds to produce ≤1000 E. coli per 100 ml for both 50% and 95% compliance. One procedure was based on the classical Marais equations and the other on the modern von Sperling equations. For the range of parameter variations selected the classical design procedure required less land area and had a shorter hydraulic retention time than the modern design procedure. For both procedures the design for 90% compliance required substantially more land and a longer retention time than the design for 50% compliance. Regulators and designers should seek a balance between system reliability (as set by the percentage compliance specified or adopted) and system costs, especially (but not only) in developing countries. It is recommended that new waste stabilization pond (WSP) systems be designed for compliance with a given E. coli effluent requirement by the classical procedure and that existing overloaded WSP systems be upgraded using the modern procedure.


1987 ◽  
Vol 19 (12) ◽  
pp. 39-46 ◽  
Author(s):  
Shankha K. Banerji ◽  
Brent Ruess

Twenty waste stabilization ponds in Missouri and Kansas were evaluated as to their ability to meet the State effluent requirements. It was found that a large number of these ponds were violating the BOD or the suspended solids requirements on many occasions. The performance of these ponds did not correlate well with the traditional design parameters, such as BOD loading rates or mean hydraulic detention time. The use of multiple cells was also not found to be advantageous in all situations. Some of the pond design equations did not provide a valid method of estimating their performance. Effluent polishing methods are necessary to remove excess suspended solids during the critical summer months.


Waterlines ◽  
1989 ◽  
Vol 8 (1) ◽  
pp. 2-4
Author(s):  
Leo Glensvig ◽  
Dorte Glensvig

Sign in / Sign up

Export Citation Format

Share Document