Somatotopic organization of cutaneous afferent terminals and dorsal horn neuronal receptive fields in the superficial and deep laminae of the rat lumbar spinal cord

1986 ◽  
Vol 251 (4) ◽  
pp. 517-531 ◽  
Author(s):  
Clifford J. Woolf ◽  
Maria Fitzgerald
1984 ◽  
Vol 52 (3) ◽  
pp. 449-458 ◽  
Author(s):  
A. R. Light ◽  
R. G. Durkovic

Single-unit recordings from 312 units of lamina I-VII of the lumbar spinal cord of unanesthetized, decerebrate, T8 spinal cats were used to determine the somatotopic and laminar organization of spinal neurons responding to cutaneous stimulation of the hindlimb. Properties of cells confined to different Rexed laminae (I-VII) were shown to differ in several respects, including responses to variations in stimulus intensity, receptive-field areas, spontaneous frequencies, and central delays. Spinal cord neurons with similarly localized cutaneous receptive fields were found to be organized in sagittally oriented rectangular columns. These columns were 7 to at least 20 mm long (rostral-caudal axis), 0.5-1.0 mm wide, and could encompass laminae I-VII in depth. Touch, pressure, and pinch were effective excitatory inputs into each column subserving a given receptive-field location. A map of the somatotopic organization of units in the horizontal plane is presented, which in general confirms previous reports and in particular deals with the organization of units with receptive fields on the plantar cushion and individual toes.


1984 ◽  
Vol 52 (4) ◽  
pp. 595-611 ◽  
Author(s):  
D. Menetrey ◽  
J. de Pommery ◽  
J. M. Besson

Spinal neurons antidromically activated from either the lateral reticular nucleus (LRN) or immediately adjacent areas were identified in the rat lumbar spinal cord. In agreement with previous anatomical work (60), these neurons were widely distributed in both the dorsal and ventral horns of the spinal cord and could be subdivided into three main groups according to their location: a) deep ventromedial (DVM) cells, which project more substantially to the LRN than to other supraspinal targets; b) cells of the median portion of the neck of the dorsal horn (mNDH), which project exclusively to the LRN; c) cells lying in other parts of the dorsal horn (superficial layers, nucleus proprius, reticular extension of the neck), by their location, they are indistinguishable from cells projecting to other supraspinal targets. The probability is high that the DVM and mNDH cells contribute exclusively, or at least preferentially, to the lateral component of the spinoreticular tract (lSRT), defined as the direct spinal pathway to the LRN. Although electrophysiological properties of cells were clearly related to their spinal location, several subpopulations could be recognized in each of the three main groups. The majority of DVM neurons were in lamina VII, with some in laminae VI, VIII, and X. With the exception of a few lamina X cells, the DVM neurons had high conduction velocities. Four subpopulations of these neurons were recognized. a) Innocuous proprioceptive cells responded to small changes in joint position, some showing convergence of nonnoxious cutaneous inputs. b) High-threshold cells (approximately 50% of DVM cells). Seventy-five percent of these cells were excited from bilateral receptive fields (mostly symmetric) with noxious cutaneous pinching that extended to subcutaneous tissues. Their evoked responses had long-lasting postdischarges that continued up to several minutes after cessation of the stimulus. c) Inhibited cells had no demonstrable excitatory receptive fields and a high ongoing activity that was tonically depressed by pressure or pinch; poststimulus effects of long duration were observed. d) Cells with no resting discharge and demonstrable excitatory peripheral receptive fields. mNDH cells had recording sites at the medial border of the internal portion of the reticular area of the neck of the dorsal horn.(ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 76 (1) ◽  
pp. 242-254 ◽  
Author(s):  
P. Wilson ◽  
P. D. Kitchener ◽  
P. J. Snow

1. The morphology and somatotopic organization of the spinal arborizations of identified A beta-hair follicle afferent fibers (HFAs) with receptive fields (RFs) on the digits have been investigated in the cat by the use of intraaxonal injection of the tracer n-(2 aminoethyl) biotinamide. 2. In three cats, the long-ranging projections of six HFAs were examined by selectively injecting afferents with RFs on digit 2, 4, or 5, directly over the digit 3 representation, and examining their collateral morphology in transverse sections of the spinal cord. The rostral and caudal boundaries of the digit 3 representation were determined by mapping the RFs of identified spinocervical tract (SCT) neurons. 3. In two more cats, three HFAs were injected at random rostrocaudal positions and their morphology was examined in parasagittal sections. In one animal (2 HFAs), the somatotopy of the digit representation was again determined by mapping the RFs of SCT neurons. In the remaining cat (1 HFA), the somatotopy of the dorsal horn was mapped from the RFs of unidentified dorsal horn neurons. 4. Hair follicle afferents emitted many more collaterals, over much greater rostrocaudal distances, than indicated by previous horseradish peroxidase studies, and all collaterals gave rise to synaptic boutons. 5. HFAs that have RFs confined to a small part of a digit give rise to bouton-bearing axonal branches throughout the entire rostrocaudal extent of the hindpaw representation.


2007 ◽  
Vol 35 (06) ◽  
pp. 987-993 ◽  
Author(s):  
Byeol-Rim Kang ◽  
Chang-Beohm Ahn ◽  
Byung-Tae Choi

We investigated whether the 2 Hz electroacupuncture (EA) analgesia is associated with phosphorylation of N-methyl-D-aspartate receptor (NMDAR) NR-1 subunits and NMDAR antagonism in the lumbar spinal cord of rats. EA stimulation produced an increase of serine phosphorylation of NMDAR NR-1 subunits in the spinal cord as compared with normal conditions. However, the intrathecal injection of NMDAR antagonist D-2-amino-5-phosphonopentanoic acid significantly prevented serine phosphorylation of NMDAR NR-1 subunits induced by EA stimulation in the dorsal horn of spinal cord. These results indicate that EA analgesia by stimulation of peripheral nerves may be involved in an increase of NR-1 serine phosphorylation in the dorsal horn of the spinal cord.


Sign in / Sign up

Export Citation Format

Share Document