afferent terminals
Recently Published Documents


TOTAL DOCUMENTS

211
(FIVE YEARS 13)

H-INDEX

42
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Osnat Oz ◽  
Lior Matityahu ◽  
Aviv Mizrahi-Kliger ◽  
Alexander Kaplan ◽  
Noa Berkowitz ◽  
...  

The tonic activity of striatal cholinergic interneurons (CINs) is modified differentially by their afferent inputs. Although their unitary synaptic currents are identical, cortical inputs onto distal dendrites only weakly entrain CINs, whereas proximal thalamic inputs trigger abrupt pauses in discharge in response to salient external stimuli. To test whether the dendritic expression of the active conductances that drive autonomous discharge contribute to the CINs' capacity to dissociate cortical from thalamic inputs, we used an optogenetics-based method to quantify dendritic excitability. We found that the persistent sodium (NaP) current gave rise to dendritic boosting and that the hyperpolarization-activated cyclic nucleotide-gated (HCN) current gave rise to a subhertz membrane resonance. This resonance may underlie our novel finding of an association between CIN pauses and internally-generated slow wave events in sleeping non-human primates. Moreover, our method indicated that dendritic NaP and HCN currents were preferentially expressed in proximal dendrites. We validated this non-uniform distribution with two-photon imaging of dendritic back-propagating action potentials, and by demonstrating boosting of thalamic, but not cortical, inputs by NaP currents. Thus, the localization of active dendritic conductances in CIN dendrites mirrors the spatial distribution of afferent terminals and may promote their differential responses to thalamic vs. cortical inputs.


2021 ◽  
Vol 321 (5) ◽  
pp. F587-F599
Author(s):  
Nicolas Montalbetti ◽  
Marcelo D. Carattino

Our study indicates that protons and their cognate acid-sensing ion channel receptors are part of a mechanism that operates at bladder afferent terminals to control their function and that the loss of this regulatory mechanism results in hyperactivation of nociceptive pathways and the development of pain in the setting of chemical-induced cystitis.


2021 ◽  
Vol 15 ◽  
Author(s):  
Frances L. Meredith ◽  
Katherine J. Rennie

Inner ear hair cells form synapses with afferent terminals and afferent neurons carry signals as action potentials to the central nervous system. Efferent neurons have their origins in the brainstem and some make synaptic contact with afferent dendrites beneath hair cells. Several neurotransmitters have been identified that may be released from efferent terminals to modulate afferent activity. Dopamine is a candidate efferent neurotransmitter in both the vestibular and auditory systems. Within the cochlea, activation of dopamine receptors may reduce excitotoxicity at the inner hair cell synapse via a direct effect of dopamine on afferent terminals. Here we investigated the effect of dopamine on sodium currents in acutely dissociated vestibular afferent calyces to determine if dopaminergic signaling could also modulate vestibular responses. Calyx terminals were isolated along with their accompanying type I hair cells from the cristae of gerbils (P15-33) and whole cell patch clamp recordings performed. Large transient sodium currents were present in all isolated calyces; compared to data from crista slices, resurgent Na+ currents were rare. Perfusion of dopamine (100 μM) in the extracellular solution significantly reduced peak transient Na+ currents by approximately 20% of control. A decrease in Na+ current amplitude was also seen with extracellular application of the D2 dopamine receptor agonist quinpirole, whereas the D2 receptor antagonist eticlopride largely abolished the response to dopamine. Inclusion of the phosphatase inhibitor okadaic acid in the patch electrode solution occluded the response to dopamine. The reduction in calyx sodium current in response to dopamine suggests efferent signaling through D2 dopaminergic receptors may occur via common mechanisms to decrease excitability in inner ear afferents.


2021 ◽  
Vol 15 ◽  
Author(s):  
Songping Yao ◽  
Qiuying Zhou ◽  
Shuiyu Li ◽  
Toru Takahata

Cytochrome oxidase (CO) histochemistry has been used to reveal the cytoarchitecture of the primate brain, including blobs/puffs/patches in the striate cortex (V1), and thick, thin and pale stripes in the middle layer of the secondary visual cortex (V2). It has been suggested that CO activity is coupled with the spiking activity of neurons, implying that neurons in these CO-rich subcompartments are more active than surrounding regions. However, we have discussed possibility that CO histochemistry represents the distribution of thalamo-cortical afferent terminals that generally use vesicular glutamate transporter 2 (VGLUT2) as their main glutamate transporter, and not the activity of cortical neurons. In this study, we systematically compared the labeling patterns observed between CO histochemistry and immunohistochemistry (IHC) for VGLUT2 from the system to microarchitecture levels in the visual cortex of squirrel monkeys. The two staining patterns bore striking similarities at all levels of the visual cortex, including the honeycomb structure of V1 layer 3Bβ (Brodmann's layer 4A), the patchy architecture in the deep layers of V1, the superficial blobs of V1, and the V2 stripes. The microarchitecture was more evident in VGLUT2 IHC, as expected. VGLUT2 protein expression that produced specific IHC labeling is thought to originate from the thalamus since the lateral geniculate nucleus (LGN) and the pulvinar complex both show high expression levels of VGLUT2 mRNA, but cortical neurons do not. These observations support our theory that the subcompartments revealed by CO histochemistry represent the distribution of thalamo-cortical afferent terminals in the primate visual cortex.


2020 ◽  
Vol 319 (6) ◽  
pp. C1097-C1106
Author(s):  
Forrest J. Ragozzino ◽  
Rachel A. Arnold ◽  
Cody W. Kowalski ◽  
Marina I. Savenkova ◽  
Ilia N. Karatsoreos ◽  
...  

Circulating blood glucocorticoid levels are dynamic and responsive to stimuli that impact autonomic function. In the brain stem, vagal afferent terminals release the excitatory neurotransmitter glutamate to neurons in the nucleus of the solitary tract (NTS). Vagal afferents integrate direct visceral signals and circulating hormones with ongoing NTS activity to control autonomic function and behavior. Here, we investigated the effects of corticosterone (CORT) on glutamate signaling in the NTS using patch-clamp electrophysiology on brain stem slices containing the NTS and central afferent terminals from male C57BL/6 mice. We found that CORT rapidly decreased both action potential-evoked and spontaneous glutamate signaling. The effects of CORT were phenocopied by dexamethasone and blocked by mifepristone, consistent with glucocorticoid receptor (GR)-mediated signaling. While mRNA for GR was present in both the NTS and vagal afferent neurons, selective intracellular quenching of G protein signaling in postsynaptic NTS neurons eliminated the effects of CORT. We then investigated the contribution of retrograde endocannabinoid signaling, which has been reported to transduce nongenomic GR effects. Pharmacological or genetic elimination of the cannabinoid type 1 receptor signaling blocked CORT suppression of glutamate release. Together, our results detail a mechanism, whereby the NTS integrates endocrine CORT signals with fast neurotransmission to control autonomic reflex pathways.


2020 ◽  
Vol 117 (50) ◽  
pp. 32155-32164
Author(s):  
Xiao-Yang Zhang ◽  
Shi-Yu Peng ◽  
Li-Ping Shen ◽  
Qian-Xing Zhuang ◽  
Bin Li ◽  
...  

Anxiety commonly co‐occurs with obsessive-compulsive disorder (OCD). Both of them are closely related to stress. However, the shared neurobiological substrates and therapeutic targets remain unclear. Here we report an amelioration of both anxiety and OCD via the histamine presynaptic H3 heteroreceptor on glutamatergic afferent terminals from the prelimbic prefrontal cortex (PrL) to the nucleus accumbens (NAc) core, a vital node in the limbic loop. The NAc core receives direct hypothalamic histaminergic projections, and optogenetic activation of hypothalamic NAc core histaminergic afferents selectively suppresses glutamatergic rather than GABAergic synaptic transmission in the NAc core via the H3 receptor and thus produces an anxiolytic effect and improves anxiety- and obsessive-compulsive-like behaviors induced by restraint stress. Although the H3 receptor is expressed in glutamatergic afferent terminals from the PrL, basolateral amygdala (BLA), and ventral hippocampus (vHipp), rather than the thalamus, only the PrL– and not BLA– and vHipp–NAc core glutamatergic pathways among the glutamatergic afferent inputs to the NAc core is responsible for co-occurrence of anxiety- and obsessive-compulsive-like behaviors. Furthermore, activation of the H3 receptor ameliorates anxiety and obsessive-compulsive-like behaviors induced by optogenetic excitation of the PrL–NAc glutamatergic afferents. These results demonstrate a common mechanism regulating anxiety- and obsessive-compulsive-like behaviors and provide insight into the clinical treatment strategy for OCD with comorbid anxiety by targeting the histamine H3 receptor in the NAc core.


2020 ◽  
Vol 124 (2) ◽  
pp. 510-524
Author(s):  
Frances L. Meredith ◽  
Katherine J. Rennie

Action potential firing patterns differ between groups of afferent neurons innervating vestibular epithelia. We investigated the biophysical properties of Na+ currents in specialized vestibular calyx afferent terminals during postnatal development. Mature calyces express Na+ currents with transient, persistent, and resurgent components. Nav1.6 channels contribute to resurgent Na+ currents and may enhance firing in peripheral calyx afferents. Understanding Na+ channels that contribute to vestibular nerve responses has implications for developing new treatments for vestibular dysfunction.


eNeuro ◽  
2020 ◽  
Vol 7 (3) ◽  
pp. ENEURO.0118-20.2020 ◽  
Author(s):  
Sheng Wang ◽  
Chao Bian ◽  
Jiale Yang ◽  
Vipin Arora ◽  
Yiwei Gao ◽  
...  

2020 ◽  
Vol 123 (2) ◽  
pp. 658-669 ◽  
Author(s):  
C. E. Stewart ◽  
D. S. Bauer ◽  
A. C. Kanicki ◽  
R. A. Altschuler ◽  
W. M. King

The otolith organs play a critical role in detecting linear acceleration and gravity to control posture and balance. Some afferents that innervate these structures can be activated by sound and are at risk for noise overstimulation. A previous report demonstrated that noise exposure can abolish vestibular short-latency evoked potential (VsEP) responses and damage calyceal terminals. However, the stimuli that were used to elicit responses were weaker than those established in previous studies and may have been insufficient to elicit VsEP responses in noise-exposed animals. The goal of this study was to determine the effect of an established noise exposure paradigm on VsEP responses using large head-jerk stimuli to determine if noise induces a stimulus threshold shift and/or if large head-jerks are capable of evoking VsEP responses in noise-exposed rats. An additional goal is to relate these measurements to the number of calyceal terminals and hair cells present in noise-exposed vs. non-noise-exposed tissue. Exposure to intense continuous noise significantly reduced VsEP responses to large stimuli and abolished VsEP responses to small stimuli. This finding confirms that while measurable VsEP responses can be elicited from noise-lesioned rat sacculi, larger head-jerk stimuli are required, suggesting a shift in the minimum stimulus necessary to evoke the VsEP. Additionally, a reduction in labeled calyx-only afferent terminals was observed without a concomitant reduction in the overall number of calyces or hair cells. This finding supports a critical role of calretinin-expressing calyceal-only afferents in the generation of a VsEP response. NEW & NOTEWORTHY This study identifies a change in the minimum stimulus necessary to evoke vestibular short-latency evoked potential (VsEP) responses after noise-induced damage to the vestibular periphery and reduced numbers of calretinin-labeled calyx-only afferent terminals in the striolar region of the sacculus. These data suggest that a single intense noise exposure may impact synaptic function in calyx-only terminals in the striolar region of the sacculus. Reduced calretinin immunolabeling may provide insight into the mechanism underlying noise-induced changes in VsEP responses.


Sign in / Sign up

Export Citation Format

Share Document