Effects of chemical reaction, heat and mass transfer on non-linear MHD flow over an accelerating surface with heat source and thermal stratification in the presence of suction or injection

2003 ◽  
Vol 19 (7) ◽  
pp. 513-520 ◽  
Author(s):  
S. P. Anjali Devi ◽  
R. Kandasamy
2006 ◽  
Vol 33 (2) ◽  
pp. 123-148 ◽  
Author(s):  
R. Kandasamy ◽  
Wahid Abd ◽  
Azme Khamis

The effect of chemical reaction, heat and mass transfer on boundary layer flow over a porous wedge with heat radiation has been studied in the presence of suction or injection. An approximate numerical solution for the steady laminar boundary-layer flow over a wall of the wedge in the presence of species concentration and mass diffusion has been obtained by solving the governing equations using numerical technique. The fluid is assumed to be viscous and incompressible. Numerical calculations are carried out for different values of dimensionless parameters and an analysis of the results obtained shows that the flow field is influenced appreciably by the chemical reaction, the buoyancy ratio between species and thermal diffusion and suction/injection at wall surface. Effects of these major parameters on the transport behaviors are investigated methodically and typical results are illustrated to reveal the tendency of the solutions. Representative results are presented for the velocity, temperature, and concentration distributions, as well as the skin friction, rate of heat transfer and mass transfer. Comparisons with previously published works are performed and excellent agreement between the results is obtained. .


2011 ◽  
Vol 7 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Naikotin Kishan ◽  
P. Amrutha

This paper deals with the study of  nonlinear MHD flow, with heat and mass transfer characteristics of an incompressible, viscous, electrically conducting and Boussinesq fluid on a vertical stretching surface with thermal stratification and chemical reaction by taking in to account the viscous dissipation effects. Adopting the similarity transformation, governing nonlinear partial differential equations of the problem are transformed to nonlinear ordinary differential equations. The Quasi-linearization technique is used for the non-linear momentum equation and then the numerical solution of the problem is derived using implicit finite difference technique, for different values of the dimensionless parameters. The numerical values obtained for velocity profiles, temperature profiles and concentration profiles are represent graphically in figures.  The results obtained show that the flow field is influenced appreciably by the presence of viscous dissipation, thermal stratification, chemical reaction and magnetic field.DOI: 10.3329/jname.v7i1.3254 


2007 ◽  
Vol 34 (2) ◽  
pp. 111-134 ◽  
Author(s):  
R. Kandasamy ◽  
I. Hashim ◽  
M Muhaimin ◽  
S Seripah

In the present study, an analysis is carried out to study the variable viscosity and chemical reaction effects on MHD flow, heat, and mass transfer characteristics in a viscous fluid over a porous wedge in the presence of heat radiation. The wall of the wedge is embedded in a uniform Darcian porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by using the R. K. Gill and shooting methods. The effects of different parameters on the dimensionless velocity, temperature, and concentration profiles are shown graphically. Comparisons with previously published works are performed and excellent agreement between the results is obtained. The results are presented graphically and the conclusion is drawn that the flow field and other quantities of physical interest are significantly influenced by these parameters.


Sign in / Sign up

Export Citation Format

Share Document