scholarly journals Nonequilibrium scaling limit for a tagged particle in the simple exclusion process with long jumps

2009 ◽  
Vol 62 (2) ◽  
pp. 198-214 ◽  
Author(s):  
Milton Jara
2019 ◽  
Vol 51 (03) ◽  
pp. 717-744
Author(s):  
Adriana Uquillas ◽  
Adilson Simonis

AbstractWe consider the nearest-neighbour simple exclusion process on the one-dimensional discrete torus $\mathbb{T}_N=\mathbb{Z}/N\mathbb{Z}$ , with random rates $c_N=\{c_{x,N}\colon x \in \mathbb{T}_N\}$ defined in terms of a homogeneous Poisson process on $\mathbb{R}$ with intensity $\lambda$ . Given a realization of the Poisson process, the jump rate along the edge $\{x,x+1\}$ is 1 if there is not any Poisson mark in $ (x,x+1) $ ; otherwise, it is $\lambda/N,\, \lambda \in( 0,1]$ . The density profile of this process with initial measure associated to an initial profile $\rho_0\colon \mathbb{R} \rightarrow [0,1]$ , evolves as the solution of a bounded diffusion random equation. This result follows from an appropriate quenched hydrodynamic limit. If $\lambda=1$ then $\rho$ is discontinuous at each Poisson mark with passage through the slow bonds, otherwise the conductance at the slow bonds decreases meaning no passage through the slow bonds in the continuum. The main results are concerned with upper and lower quenched and annealed bounds of $T_j$ , where $T_j$ is the first displacement time of a tagged particle in a stochastic cluster of size j (the cluster is defined via specific macroscopic density profiles). It is possible to observe that when time t grows, then $\mathbb{P}\{T_j \geq t\}$ decays quadratically in both the upper and lower bounds, and falls as slow as the presence of more Poisson marks neighbouring the tagged particle, as expected.


Author(s):  
Leonid Petrov ◽  
Axel Saenz

AbstractWe obtain a new relation between the distributions $$\upmu _t$$ μ t at different times $$t\ge 0$$ t ≥ 0 of the continuous-time totally asymmetric simple exclusion process (TASEP) started from the step initial configuration. Namely, we present a continuous-time Markov process with local interactions and particle-dependent rates which maps the TASEP distributions $$\upmu _t$$ μ t backwards in time. Under the backwards process, particles jump to the left, and the dynamics can be viewed as a version of the discrete-space Hammersley process. Combined with the forward TASEP evolution, this leads to a stationary Markov dynamics preserving $$\upmu _t$$ μ t which in turn brings new identities for expectations with respect to $$\upmu _t$$ μ t . The construction of the backwards dynamics is based on Markov maps interchanging parameters of Schur processes, and is motivated by bijectivizations of the Yang–Baxter equation. We also present a number of corollaries, extensions, and open questions arising from our constructions.


Sign in / Sign up

Export Citation Format

Share Document