The Role of Ion Pairs in the Second-Order NLO Response of 4-X-1-Methylpiridinium Salts

ChemPhysChem ◽  
2010 ◽  
Vol 11 (2) ◽  
pp. 495-507 ◽  
Author(s):  
Francesca Tessore ◽  
Elena Cariati ◽  
Franco Cariati ◽  
Dominique Roberto ◽  
Renato Ugo ◽  
...  
Keyword(s):  
2008 ◽  
Vol 361 (14-15) ◽  
pp. 4070-4076 ◽  
Author(s):  
Claudia Dragonetti ◽  
Stefania Righetto ◽  
Dominique Roberto ◽  
Renato Ugo ◽  
Adriana Valore ◽  
...  

Inorganics ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 81 ◽  
Author(s):  
Francesca Tessore ◽  
Alessio Orbelli Biroli ◽  
Gabriele Di Carlo ◽  
Maddalena Pizzotti

This short review outlines the main results obtained by our research group over the last 15 years in the field of porphyrins and metal porphyrins for second order nonlinear optics (NLO). This overview aims to provide a general framework of the key factors which affect the second order NLO response of porphyrin chromophores. The pivotal role of the porphyrin ring as π-conjugated linker, the nature of the metal center, the substitution pattern which features the geometrical arrangement of donor and acceptor substituents in the different classes of porphyrin NLO-phores, as well as the aggregation phenomena and the role of solvents are addressed in detail.


2016 ◽  
Vol 94 (7) ◽  
pp. 620-625 ◽  
Author(s):  
Yang-Yang Hu ◽  
Wei-Qi Li ◽  
Li Yang ◽  
Ji-Kang Feng ◽  
Wei Quan Tian

The electronic properties and second-order nonlinear optical (NLO) responses of B/N-doped zigzag graphene nanoribbon (ZGNR) have been investigated using quantum chemistry methods. The electron-deficient B atoms prefer to form π-conjugation with the C atoms nearby along the B-doped zigzag edge. On the other hand, the electron-rich N atoms with radical characteristics weaken the conjugated bonding effects in the N-doped ZGNR. The NLO response of the ZGNR is enhanced by doping only one zigzag edge with B or N atoms. The conjugated B-doped zigzag edge takes the role of electron donor, while the N-doped zigzag edge serves as electron acceptor, giving rise to the discordant impact on the second-order NLO response of the BN-doped ZGNR.


2021 ◽  
pp. 115328
Author(s):  
Stijn van Cleuvenbergen ◽  
Griet Depotter ◽  
Koen Clays ◽  
Przemysław Kędziora

RSC Advances ◽  
2014 ◽  
Vol 4 (63) ◽  
pp. 33312-33318 ◽  
Author(s):  
Maolin Zhang ◽  
Guowei Deng ◽  
Airui Zhang ◽  
Huajun Xu ◽  
Heyan Huang ◽  
...  

We have designed and synthesized a new chromophore having a 1,1,7,7-tetramethyljulolidine fused furan ring as the electron donor group to systematically investigate the role of the benzo[b]furan ring in NLO chromophores.


2021 ◽  
Vol 140 (5) ◽  
Author(s):  
Huimin Kang ◽  
Jinting Ye ◽  
Hongqiang Wang ◽  
Yuan Zhang ◽  
Yongqing Qiu

2013 ◽  
Vol 218 (2) ◽  
pp. 179-191 ◽  
Author(s):  
Jordan M Willcox ◽  
Alastair J S Summerlee ◽  
Coral L Murrant

Relaxin produces a sustained decrease in total peripheral resistance, but the effects of relaxin on skeletal muscle arterioles, an important contributor to systemic resistance, are unknown. Using the intact, blood-perfused hamster cremaster muscle preparationin situ, we tested the effects of relaxin on skeletal muscle arteriolar microvasculature by applying 10−10 M relaxin to second-, third- and fourth-order arterioles and capillaries. The mechanisms responsible for relaxin-induced dilations were explored by applying 10−10 M relaxin to second-order arterioles in the presence of 10−5 M N(G)-nitro-l-arginine methyl ester (l-NAME, nitric oxide (NO) synthase inhibitor), 10−5 M glibenclamide (GLIB, ATP-dependent potassium (K+) channel inhibitor), 10−3 M tetraethylammonium (TEA) or 10−7 M iberiotoxin (IBTX, calcium-associated K+channel inhibitor). Relaxin caused second- (peak change in diameter: 8.3±1.7 μm) and third (4.5±1.1 μm)-order arterioles to vasodilate transiently while fourth-order arterioles did not (0.01±0.04 μm). Relaxin-induced vasodilations were significantly inhibited byl-NAME, GLIB, TEA and IBTX. Relaxin stimulated capillaries to induce a vasodilation in upstream fourth-order arterioles (2.1±0.3 μm), indicating that relaxin can induce conducted responses vasodilation that travels through blood vessel walls via gap junctions. We confirmed gap junction involvement by showing that gap junction uncouplers (18-β-glycyrrhetinic acid (40×10−6 M) or 0.07% halothane) inhibited upstream vasodilations to localised relaxin stimulation of second-order arterioles. Therefore, relaxin produces transient NO- and K+channel-dependent vasodilations in skeletal muscle arterioles and stimulates capillaries to initiate conducted responses. The transient nature of the arteriolar dilation brings into question the role of skeletal muscle vascular beds in generating the sustained systemic haemodynamic effects induced by relaxin.


Author(s):  
Dmitri R. Yafaev ◽  
◽  
◽  

We consider symmetric second-order differential operators with real coefficients such that the corresponding differential equation is in the limit circle case at infinity. Our goal is to construct the theory of self-adjoint realizations of such operators by an analogy with the case of Jacobi operators. We introduce a new object, the quasiresolvent of the maximal operator, and use it to obtain a very explicit formula for the resolvents of all self-adjoint realizations. In particular, this yields a simple representation for the Cauchy-Stieltjes transforms of the spectral measures playing the role of the classical Nevanlinna formula in the theory of Jacobi operators.


Sign in / Sign up

Export Citation Format

Share Document