limit circle case
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 1)

H-INDEX

8
(FIVE YEARS 0)

Author(s):  
Dmitri R. Yafaev ◽  
◽  
◽  

We consider symmetric second-order differential operators with real coefficients such that the corresponding differential equation is in the limit circle case at infinity. Our goal is to construct the theory of self-adjoint realizations of such operators by an analogy with the case of Jacobi operators. We introduce a new object, the quasiresolvent of the maximal operator, and use it to obtain a very explicit formula for the resolvents of all self-adjoint realizations. In particular, this yields a simple representation for the Cauchy-Stieltjes transforms of the spectral measures playing the role of the classical Nevanlinna formula in the theory of Jacobi operators.



2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Kun Li ◽  
Maozhu Zhang ◽  
Jinming Cai ◽  
Zhaowen Zheng

This paper deals with a singular (Weyl’s limit circle case) non-self-adjoint (dissipative) Dirac operator with eigenparameter dependent boundary condition and finite general transfer conditions. Using the equivalence between Lax-Phillips scattering matrix and Sz.-Nagy-Foiaş characteristic function, the completeness of the eigenfunctions and associated functions of this dissipative operator is discussed.



Author(s):  
Bilender P. Allahverdiev ◽  
Husein Tuna

In this paper, we consider a non-linear impulsive Sturm-Liouville problem on semiinfinite intervals in which the limit-circle case holds at infinity for THE Sturm-Liouville expression. We prove the existence and uniqueness theorems for this problem.



Author(s):  
Bilender P. Allahverdiev ◽  
Hüseyin Tuna

In this work, we establish Titchmarsh–Weyl theory for singular [Formula: see text]-Dirac systems. Thus, we extend classical Titchmarsh–Weyl theory for Dirac systems to [Formula: see text]-analogue of this system. We show that it does not occur for the limit-circle case for the [Formula: see text]-Dirac system.



2016 ◽  
Vol 53 (4) ◽  
pp. 512-524
Author(s):  
Hüseyin Tuna ◽  
Aytekin Eryilmaz

In this paper, we study dissipative q-Sturm—Liouville operators in Weyl’s limit circle case. We describe all maximal dissipative, maximal accretive, self adjoint extensions of q-Sturm—Liouville operators. Using Livšic’s theorems, we prove a theorem on completeness of the system of eigenvectors and associated vectors of the dissipative q-Sturm—Liouville operators.



2016 ◽  
Vol 66 (4) ◽  
Author(s):  
Bilender P. Allahverdiev

AbstractIn this study we construct a space of boundary values of the minimal symmetric discrete Sturm-Liouville (or second-order difference) operators with defect index (1, 1) (in limit-circle case at ±∞ and limit-point case at ∓∞), acting in the Hilbert space



2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Keshav Raj Acharya

The aim of this paper is to show that, in the limit circle case, the defect index of a symmetric relation induced by canonical systems, is constant on ℂ. This provides an alternative proof of the De Branges theorem that the canonical systems with tr H1 imply the limit point case. To this end, we discuss the spectral theory of a linear relation induced by a canonical system.





2011 ◽  
Vol 2011 ◽  
pp. 1-41 ◽  
Author(s):  
Roman Šimon Hilscher ◽  
Petr Zemánek

We develop the Weyl-Titchmarsh theory for time scale symplectic systems. We introduce theM(λ)-function, study its properties, construct the corresponding Weyl disk and Weyl circle, and establish their geometric structure including the formulas for their center and matrix radii. Similar properties are then derived for the limiting Weyl disk. We discuss the notions of the system being in the limit point or limit circle case and prove several characterizations of the system in the limit point case and one condition for the limit circle case. We also define the Green function for the associated nonhomogeneous system and use its properties for deriving further results for the original system in the limit point or limit circle case. Our work directly generalizes the corresponding discrete time theory obtained recently by S. Clark and P. Zemánek (2010). It also unifies the results in many other papers on the Weyl-Titchmarsh theory for linear Hamiltonian differential, difference, and dynamic systems when the spectral parameter appears in the second equation. Some of our results are new even in the case of the second-order Sturm-Liouville equations on time scales.



Sign in / Sign up

Export Citation Format

Share Document