Crystal structure refinement of CuxAg1-xInTe2 bulk material determined from X-ray powder diffraction data using the Rietveld method

2004 ◽  
Vol 39 (3) ◽  
pp. 266-273 ◽  
Author(s):  
A. M. Moustafa ◽  
E. A. El-Sayad ◽  
G. B. Sakr
1990 ◽  
Vol 5 (3) ◽  
pp. 137-143 ◽  
Author(s):  
R.I. Smith ◽  
A.R. West ◽  
I. Abrahams ◽  
P.G. Bruce

AbstractThe crystal structure of metastable Li2Si2O5, Fw = 150.05, has been refined by the Rietveld method using high resolution X-ray powder diffraction data recorded at the Daresbury Synchrotron Radiation Source on the new 8.3 diffractometer. Li2Si2O5, in keeping with many compounds of interest to the materials scientist, exhibits relatively broad diffraction peaks. It is important to establish the quality of crystal structure data that may be obtained from such materials on this new instrument. Various functions were used to model the peak shape from this instrument; a split-Pearson VII function appeared to be marginally superior to Pearson VII or Pseudo-Voigt functions. Refinement was carried out using the split-Pearson VII in the space group Pbcn (60) and terminated with a = 5.6871(6), b = 4.7846(5), c = 14.645(1) Å, V = 398.50 Å3, Z=4, Dc= 2.502 gcm−3, Rwp = 17.06, Rex = 14.48 and Χ2 = 1.39. The refined parameters are compared with those obtained from a previous single crystal X-ray determination.


2010 ◽  
Vol 25 (3) ◽  
pp. 247-252 ◽  
Author(s):  
F. Laufek ◽  
J. Návrátil

The crystal structure of skutterudite-related phase IrGe1.5Se1.5 has been refined by the Rietveld method from laboratory X-ray powder diffraction data. Refined crystallographic data for IrGe1.5Se1.5 are a=12.0890(2) Å, c=14.8796(3) Å, V=1883.23(6) Å3, space group R3 (No. 148), Z=24, and Dc=8.87 g/cm3. Its crystal structure can be derived from the ideal skutterudite structure (CoAs3), where Se and Ge atoms are ordered in layers perpendicular to the [111] direction of the original skutterudite cell. Weak distortions of the anion and cation sublattices were also observed.


2005 ◽  
Vol 20 (3) ◽  
pp. 203-206 ◽  
Author(s):  
M. Grzywa ◽  
M. Różycka ◽  
W. Łasocha

Potassium tetraperoxomolybdate (VI) K2[Mo(O2)4] was prepared, and its X-ray powder diffraction pattern was recorded at low temperature (258 K). The unit cell parameters were refined to a=10.7891(2) Å, α=64.925(3)°, space group R−3c (167), Z=6. The compound is isostructural with potassium tetraperoxotungstate (VI) K2[W(O2)4] (Stomberg, 1988). The sample of K2[Mo(O2)4] was characterized by analytical investigations, and the results of crystal structure refinement by Rietveld method are presented; final RP and RWP are 9.79% and 12.37%, respectively.


1995 ◽  
Vol 39 ◽  
pp. 515-521
Author(s):  
Kenneth B. Schwartz ◽  
Robert B. Von Dreele

A full structure analysis of a completely crystallized sample of high-density polyethylene (HDPE) has been achieved using x-ray powder diffraction data collected on a laboratory-based powder diffractometer. The structure refinement is performed using the Rietveld method and includes refinement of the carbon and hydrogen atomic positions and temperature factors. The C-C and C-H bond distances and the C-C-C bond angle along the polyethylene chain have been calculated from the refined atomic positions and are in very good agreement with previous experimental and modelling determinations. Evaluations of the pseudo-Voigt profile parameters for Lorentzian strain broadening and me Scherrer coefficient for Gaussian broadening yield reasonable values for microstrain and particle size for this sample. Refinement of the preferred orientation parameter indicates that the HDPE flakes consist of platy crystals or lamellae that are packed normal to the diffraction vector.


Sign in / Sign up

Export Citation Format

Share Document