An integrity verification scheme of completeness and zero-knowledge for multi-Cloud storage

2017 ◽  
Vol 30 (16) ◽  
pp. e3324 ◽  
Author(s):  
Laicheng Cao ◽  
Wenwen He ◽  
Yufei Liu ◽  
Xian Guo ◽  
Tao Feng
Information ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 409
Author(s):  
Yuan Ping ◽  
Yu Zhan ◽  
Ke Lu ◽  
Baocang Wang

Although cloud storage provides convenient data outsourcing services, an untrusted cloud server frequently threatens the integrity and security of the outsourced data. Therefore, it is extremely urgent to design security schemes allowing the users to check the integrity of data with acceptable computational and communication overheads. In this paper, we first propose a public data integrity verification scheme based on the algebraic signature and elliptic curve cryptography. This scheme not only allows the third party authority deputize for users to verify the outsourced data integrity, but also resists malicious attacks such as replay attacks, replacing attack and forgery attacks. Data privacy is guaranteed by symmetric encryption. Furthermore, we construct a novel data structure named divide and conquer hash list, which can efficiently perform data updating operations, such as deletion, insertion, and modification. Compared with the relevant schemes in the literature, security analysis and performance evaluations show that the proposed scheme gains some advantages in integrity verification and dynamic updating.


2019 ◽  
Vol 96 ◽  
pp. 376-385 ◽  
Author(s):  
Yongkai Fan ◽  
Xiaodong Lin ◽  
Gang Tan ◽  
Yuqing Zhang ◽  
Wei Dong ◽  
...  

2021 ◽  
Vol 2132 (1) ◽  
pp. 012031
Author(s):  
Kun Xu ◽  
Weiwei Chen ◽  
Yanan Zhang

Abstract In the process of multi-cloud storage data migration, data integrity is vulnerable to corruption, but the existing data integrity verification schemes for data migration across clouds are not highly reliable. To address this problem, a blockchain-based data integrity verification scheme for migration across clouds is proposed in this paper. In this scheme, a blockchain network is used instead of a third-party auditor. For each migration, a multi-cloud broker will send an integrity verification request to blockchain at three different times, and a smart contract will verify the data integrity according to the RSA-based homomorphic verification tags. Then, the security of the scheme is analyzed. Finally, simulation experiments and tests are conducted on Ethereum, and the results show the feasibility of the scheme.


Sign in / Sign up

Export Citation Format

Share Document