Localization of essential rhombomeres for respiratory rhythm generation in bullfrog tadpoles using a binary search algorithm: Rhombomere 7 is essential for the gill rhythm and suppresses lung bursts before metamorphosis

2013 ◽  
Vol 73 (12) ◽  
pp. 888-898 ◽  
Author(s):  
Maryana Duchcherer ◽  
Mufaddal I. Baghdadwala ◽  
Jenny Paramonov ◽  
Richard J.A. Wilson
1999 ◽  
Vol 82 (1) ◽  
pp. 382-397 ◽  
Author(s):  
Robert J. Butera ◽  
John Rinzel ◽  
Jeffrey C. Smith

A network of oscillatory bursting neurons with excitatory coupling is hypothesized to define the primary kernel for respiratory rhythm generation in the pre-Bötzinger complex (pre-BötC) in mammals. Two minimal models of these neurons are proposed. In model 1, bursting arises via fast activation and slow inactivation of a persistent Na+ current I NaP-h. In model 2, bursting arises via a fast-activating persistent Na+ current INaP and slow activation of a K+ current IKS. In both models, action potentials are generated via fast Na+ and K+currents. The two models have few differences in parameters to facilitate a rigorous comparison of the two different burst-generating mechanisms. Both models are consistent with many of the dynamic features of electrophysiological recordings from pre-BötC oscillatory bursting neurons in vitro, including voltage-dependent activity modes (silence, bursting, and beating), a voltage-dependent burst frequency that can vary from 0.05 to >1 Hz, and a decaying spike frequency during bursting. These results are robust and persist across a wide range of parameter values for both models. However, the dynamics of model 1 are more consistent with experimental data in that the burst duration decreases as the baseline membrane potential is depolarized and the model has a relatively flat membrane potential trajectory during the interburst interval. We propose several experimental tests to demonstrate the validity of either model and to differentiate between the two mechanisms.


2020 ◽  
Vol 16 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Israa AL-Forati ◽  
Abdulmuttalib Rashid

This paper proposes a low-cost Light Emitting Diodes (LED) system with a novel arrangement that allows an indoor multi-robot localization. The proposed system uses only a matrix of low-cost LED installed uniformly on the ground of an environment and low-cost Light Dependent Resistor (LDR), each equipped on bottom of the robot for detection. The matrix of LEDs which are driven by a modified binary search algorithm are used as active beacons. The robot localizes itself based on the signals it receives from a group of neighbor LEDs. The minimum bounded circle algorithm is used to draw a virtual circle from the information collected from the neighbor LEDs and the center of this circle represents the robot’s location. The propose system is practically implemented on an environment with (16*16) matrix of LEDs. The experimental results show good performance in the localization process.


Sign in / Sign up

Export Citation Format

Share Document