scholarly journals Practical Implementation of an Indoor Robot Localization and Identification System using an Array of Anchor Nodes

2020 ◽  
Vol 16 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Israa AL-Forati ◽  
Abdulmuttalib Rashid

This paper proposes a low-cost Light Emitting Diodes (LED) system with a novel arrangement that allows an indoor multi-robot localization. The proposed system uses only a matrix of low-cost LED installed uniformly on the ground of an environment and low-cost Light Dependent Resistor (LDR), each equipped on bottom of the robot for detection. The matrix of LEDs which are driven by a modified binary search algorithm are used as active beacons. The robot localizes itself based on the signals it receives from a group of neighbor LEDs. The minimum bounded circle algorithm is used to draw a virtual circle from the information collected from the neighbor LEDs and the center of this circle represents the robot’s location. The propose system is practically implemented on an environment with (16*16) matrix of LEDs. The experimental results show good performance in the localization process.

Electronics ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 255
Author(s):  
Kuei-Hsiang Chao ◽  
Jen-Hsiang Tsai ◽  
Ying-Hao Chen

This study proposes a binary search-based fault detection system for photovoltaic (PV) modules to ameliorate the deficiencies in the existing fault detectors for PV module arrays. The proposed system applies a single-chip microcontroller to execute the binary search algorithm. Moreover, to overcome multi-node voltage detection and reduce the number of integrated circuit components, an analog switch is used to perform detection channel switching; the detection results are displayed on a software platform developed using Visual C#. The proposed system does not require learning to execute the fault diagnosis of PV module arrays and has advantages including high accuracy and low construction costs. Finally, to verify the feasibility of the proposed system, this study simulated the abnormal situations of actual modules and applied the binary search algorithm for maximum power point tracking to detect malfunctions of the PV module arrays.


2011 ◽  
Vol 181-182 ◽  
pp. 109-112
Author(s):  
Xian Min Wei

This paper describes several current routing lookup algorithms, to study and analysize the complexity and operating practical performance of these routing lookup algorithms. The results show that although the binary search algorithm is not greatly improved in the searching performance, but in IPv6 environment, because searching performance of multi-branch Trie tree will decrease greatly, thus the superiority of binary search algorithm will be reflected better.


2017 ◽  
Vol 10 (2) ◽  
pp. 52
Author(s):  
Natarajan Meghanathan

Results of correlation study (using Pearson's correlation coefficient, PCC) between decay centrality (DEC) vs. degree centrality (DEG) and closeness centrality (CLC) for a suite of 48 real-world networks indicate an interesting trend: PCC(DEC, DEG) decreases with increase in the decay parameter δ (0 < δ < 1) and PCC(DEC, CLC) decreases with decrease in δ. We make use of this trend of monotonic decrease in the PCC values (from both sides of the δ-search space) and propose a binary search algorithm that (given a threshold value r for the PCC) could be used to identify a value of δ (if one exists, we say there exists a positive δ-spacer) for a real-world network such that PCC(DEC, DEG) ≥ r as well as PCC(DEC, CLC) ≥ r. We show the use of the binary search algorithm to find the maximum Threshold PCC value rmax (such that δ-spacermax is positive) for a real-world network. We observe a very strong correlation between rmax and PCC(DEG, CLC) as well as observe real-world networks with a larger variation in node degree to more likely have a lower rmax value and vice-versa.


2020 ◽  
Vol 69 (5) ◽  
pp. 4968-4978 ◽  
Author(s):  
Xiaodong Sun ◽  
Changchang Hu ◽  
Gang Lei ◽  
Zebin Yang ◽  
Youguang Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document