rhythm generation
Recently Published Documents


TOTAL DOCUMENTS

310
(FIVE YEARS 42)

H-INDEX

50
(FIVE YEARS 4)

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Adolfo Maia Jr. ◽  
Igor Leão Maia

In this work, we present a brief review of strategies to code rhythms and point to their possibilities and limitations in a unified way. We start by giving an overview of the representation (coding) of rhythms and their possible uses. Then we present different methods to analyse and generate rhythm patterns, which can be easily read by humans, through a simple algorithm.  We also aim to provide a general evaluation of their pros and cons regarding their use in composition and analysis. In a more abstract approach, we define Rhythm Spaces as sets of strings of symbols endowed with suitable operations and algorithms that can be applied to generate new and complex rhythm patterns. Our approach can be useful in order to provide suitable code/notation to be used in computer applications in rhythm analysis and composition.


2021 ◽  
Author(s):  
Ryan S Phillips ◽  
Jonathan E Rubin

Inspiratory breathing rhythms arise from synchronized neuronal activity in a bilaterally distributed brainstem structure known as the preBötzinger complex (preBötC). In in vitro slice preparations containing the preBötC, extracellular potassium must be elevated above physiological levels (to 7-9mM) to observe regular rhythmic respiratory motor output in the hypoglossal nerve to which the preBötC projects. Reexamination of how extracellular K+ affects preBötC neuronal activity has revealed that low amplitude oscillations persist at physiological levels. These oscillatory events are sub-threshold from the standpoint of transmission to motor output and are dubbed burstlets. Burstlets arise from synchronized neural activity in a rhythmogenic neuronal subpopulation within the preBötC that in some instances may fail to recruit the larger network events, or bursts, required to generate motor output. The fraction of subthreshold preBötC oscillatory events (burstlet fraction) decreases sigmoidally with increasing extracellular potassium. These observations underlie the burstlet theory of respiratory rhythm generation. Experimental and computational studies have suggested that recruitment of the non-rhythmogenic component of the preBötC population requires intracellular Ca2+ dynamics and activation of a calcium-activated non-selective cationic current. In this computational study, we show how intracellular calcium dynamics driven by synaptically triggered Ca2+ influx as well as Ca2+ release/uptake by the endoplasmic reticulum in conjunction with a calcium-activated non-selective cationic current can explain all of the key observations underlying the burstlet theory of respiratory rhythm generation. Thus, we provide a mechanistic basis to unify the experimental findings on rhythm generation and motor output recruitment in the preBötC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daisuke Ono ◽  
Ken-ichi Honma ◽  
Christoph Schmal ◽  
Toru Takumi ◽  
Takeshi Kawamoto ◽  
...  

AbstractClock genes Cry1 and Cry2, inhibitory components of core molecular feedback loop, are regarded as critical molecules for the circadian rhythm generation in mammals. A double knockout of Cry1 and Cry2 abolishes the circadian behavioral rhythm in adult mice under constant darkness. However, robust circadian rhythms in PER2::LUC expression are detected in the cultured suprachiasmatic nucleus (SCN) of Cry1/Cry2 deficient neonatal mice and restored in adult SCN by co-culture with wild-type neonatal SCN. These findings led us to postulate the compensatory molecule(s) for Cry1/Cry2 deficiency in circadian rhythm generation. We examined the roles of Chrono and Dec1/Dec2 proteins, the suppressors of Per(s) transcription similar to CRY(s). Unexpectedly, knockout of Chrono or Dec1/Dec2 in the Cry1/Cry2 deficient mice did not abolish but decoupled the coherent circadian rhythm into three different periodicities or significantly shortened the circadian period in neonatal SCN. DNA microarray analysis for the SCN of Cry1/Cry2 deficient mice revealed substantial increases in Per(s), Chrono and Dec(s) expression, indicating disinhibition of the transactivation by BMAL1/CLOCK. Here, we conclude that Chrono and Dec1/Dec2 do not compensate for absence of CRY1/CRY2 in the circadian rhythm generation but contribute to the coherent circadian rhythm expression in the neonatal mouse SCN most likely through integration of cellular circadian rhythms.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Yann Roussel ◽  
Stephanie F Gaudreau ◽  
Emily R Kacer ◽  
Mohini Sengupta ◽  
Tuan V Bui

Many spinal circuits dedicated to locomotor control have been identified in the developing zebrafish. How these circuits operate together to generate the various swimming movements during development remains to be clarified. In this study, we iteratively built models of developing zebrafish spinal circuits coupled to simplified musculoskeletal models that reproduce coiling and swimming movements. The neurons of the models were based upon morphologically or genetically identified populations in the developing zebrafish spinal cord. We simulated intact spinal circuits as well as circuits with silenced neurons or altered synaptic transmission to better understand the role of specific spinal neurons. Analysis of firing patterns and phase relationships helped identify possible mechanisms underlying the locomotor movements of developing zebrafish. Notably, our simulations demonstrated how the site and the operation of rhythm generation could transition between coiling and swimming. The simulations also underlined the importance of contralateral excitation to multiple tail beats. They allowed us to estimate the sensitivity of spinal locomotor networks to motor command amplitude, synaptic weights, length of ascending and descending axons, and firing behaviour. These models will serve as valuable tools to test and further understand the operation of spinal circuits for locomotion.


2021 ◽  
Author(s):  
Thomas Nuttall ◽  
Behzad Haki ◽  
Sergi Jorda

2021 ◽  
pp. JN-RM-2114-20
Author(s):  
Luiz M. Oliveira ◽  
Nathan A. Baertsch ◽  
Thiago S. Moreira ◽  
Jan-Marino Ramirez ◽  
Ana C. Takakura

2021 ◽  
Author(s):  
Julius Jonaitis ◽  
James MacLeod ◽  
Stefan R. Pulver

AbstractMechanisms of rhythm generation have been extensively studied in motor systems that control locomotion over terrain in limbed animals; however, much less is known about rhythm generation in soft-bodied terrestrial animals. Here we explored how muscarinic acetylcholine receptor (mAChR) dependent rhythm generating networks are distributed in the central nervous system (CNS) of soft-bodied Drosophila larvae. We measured fictive motor patterns in isolated CNS preparations using a combination of Ca2+ imaging and electrophysiology while manipulating mAChR signalling pharmacologically. Bath application of the mAChR agonist oxotremorine potentiated rhythm generation in distal regions of the isolated CNS, whereas application of the mAChR antagonist scopolamine suppressed rhythm generation in these regions. Oxotremorine raised baseline Ca2+ levels and potentiated rhythmic activity in isolated posterior abdominal CNS segments as well as isolated anterior brain and thoracic regions, but did not induce rhythmic activity in isolated anterior abdominal segments. Bath application of scopolamine to reduced preparations lowered baseline Ca2+ levels and abolished rhythmic activity. These results suggest the presence of a bimodal gradient of rhythmogenicity in the larval CNS, with mAChR dependent rhythm generating networks in distal regions separated by medial segments with severely reduced rhythmogenic abilities. This work furthers our understanding of motor control in soft-bodied locomotion and provides a foundation for study of rhythm generating networks in an emerging genetically tractable locomotor system.


2021 ◽  
Vol 12 ◽  
Author(s):  
Austin D. Hocker ◽  
Nina R. Morrison ◽  
Matthew L. Selby ◽  
Adrianne G. Huxtable

Pregnant women and developing infants are understudied populations in the opioid crisis, despite the rise in opioid use during pregnancy. Maternal opioid use results in diverse negative outcomes for the fetus/newborn, including death; however, the effects of perinatal (maternal and neonatal) opioids on developing respiratory circuitry are not well understood. Given the profound depressive effects of opioids on central respiratory networks controlling breathing, we tested the hypothesis that perinatal opioid exposure impairs respiratory neural circuitry, creating breathing instability. Our data demonstrate maternal opioids increase apneas and destabilize neonatal breathing. Maternal opioids also blunted opioid-induced respiratory frequency depression acutely in neonates; a unique finding since adult respiratory circuity does not desensitize to opioids. This desensitization normalized rapidly between postnatal days 1 and 2 (P1 and P2), the same age quantal slowing emerged in respiratory rhythm. These data suggest significant reorganization of respiratory rhythm generating circuits at P1–2, the same time as the preBötzinger Complex (key site of respiratory rhythm generation) becomes the dominant respiratory rhythm generator. Thus, these studies provide critical insight relevant to the normal developmental trajectory of respiratory circuits and suggest changes to mutual coupling between respiratory oscillators, while also highlighting how maternal opioids alter these developing circuits. In conclusion, the results presented demonstrate neurorespiratory disruption by maternal opioids and blunted opioid-induced respiratory frequency depression with neonatal opioids, which will be important for understanding and treating the increasing population of neonates exposed to gestational opioids.


Sign in / Sign up

Export Citation Format

Share Document