scholarly journals Impact of global warming at the range margins: phenotypic plasticity and behavioral thermoregulation will buffer an endemic amphibian

2014 ◽  
Vol 4 (23) ◽  
pp. 4467-4475 ◽  
Author(s):  
Manuel Ruiz‐Aravena ◽  
Avia Gonzalez‐Mendez ◽  
Sergio A. Estay ◽  
Juan D. Gaitán‐Espitia ◽  
Ismael Barria‐Oyarzo ◽  
...  

Botany ◽  
2012 ◽  
Vol 90 (4) ◽  
pp. 319-326 ◽  
Author(s):  
Johanne Brunet ◽  
Zachary Larson-Rabin

In high-altitude habitats, an increase in temperature and greater precipitation in the form of rain represent climate changes typically associated with global warming. We determined whether phenotypic plasticity and genetic changes in the mean phenotype could affect the adaptation of flowering time to changes in the environment resulting from global warming in a montane plant species, Aquilegia coerulea James. We collected seeds from 17 plants from each of three natural populations. For each of these 51 families, we assigned 3–4 individuals to each of four water and temperature treatments. We observed phenotypic plasticity in flowering time in response to both temperature and water availability but no genetic variance or genetic differentiation in phenotypic plasticity. These results indicate that phenotypic plasticity could provide a quick response to environmental changes but provides little evolutionary potential. In contrast to phenotypic plasticity in flowering time, the mean flowering time did vary among families and among populations, suggesting a genetic basis to flowering time and adaptation in the different populations. The most likely scenario for the adaptation of this plant species to climate change is a rapid response via phenotypic plasticity followed by selection and micro-evolutionary changes in the mean phenotype.



Author(s):  
Iván Beltrán ◽  
Constant Perry ◽  
Faustine Degottex ◽  
Martin J. Whiting




2019 ◽  
Vol 3 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Rebecca Millington ◽  
Peter M. Cox ◽  
Jonathan R. Moore ◽  
Gabriel Yvon-Durocher

Abstract We are in a period of relatively rapid climate change. This poses challenges for individual species and threatens the ecosystem services that humanity relies upon. Temperature is a key stressor. In a warming climate, individual organisms may be able to shift their thermal optima through phenotypic plasticity. However, such plasticity is unlikely to be sufficient over the coming centuries. Resilience to warming will also depend on how fast the distribution of traits that define a species can adapt through other methods, in particular through redistribution of the abundance of variants within the population and through genetic evolution. In this paper, we use a simple theoretical ‘trait diffusion’ model to explore how the resilience of a given species to climate change depends on the initial trait diversity (biodiversity), the trait diffusion rate (mutation rate), and the lifetime of the organism. We estimate theoretical dangerous rates of continuous global warming that would exceed the ability of a species to adapt through trait diffusion, and therefore lead to a collapse in the overall productivity of the species. As the rate of adaptation through intraspecies competition and genetic evolution decreases with species lifetime, we find critical rates of change that also depend fundamentally on lifetime. Dangerous rates of warming vary from 1°C per lifetime (at low trait diffusion rate) to 8°C per lifetime (at high trait diffusion rate). We conclude that rapid climate change is liable to favour short-lived organisms (e.g. microbes) rather than longer-lived organisms (e.g. trees).



Author(s):  
Charles S. Pearson
Keyword(s):  


Author(s):  
John Houghton
Keyword(s):  






Sign in / Sign up

Export Citation Format

Share Document