metabolic changes
Recently Published Documents


TOTAL DOCUMENTS

3470
(FIVE YEARS 711)

H-INDEX

87
(FIVE YEARS 13)

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 322
Author(s):  
Roberto Corchado-Cobos ◽  
Natalia García-Sancha ◽  
Marina Mendiburu-Eliçabe ◽  
Aurora Gómez-Vecino ◽  
Alejandro Jiménez-Navas ◽  
...  

Metabolic changes that facilitate tumor growth are one of the hallmarks of cancer. The triggers of these metabolic changes are located in the tumor parenchymal cells, where oncogenic mutations induce an imperative need to proliferate and cause tumor initiation and progression. Cancer cells undergo significant metabolic reorganization during disease progression that is tailored to their energy demands and fluctuating environmental conditions. Oxidative stress plays an essential role as a trigger under such conditions. These metabolic changes are the consequence of the interaction between tumor cells and stromal myofibroblasts. The metabolic changes in tumor cells include protein anabolism and the synthesis of cell membranes and nucleic acids, which all facilitate cell proliferation. They are linked to catabolism and autophagy in stromal myofibroblasts, causing the release of nutrients for the cells of the tumor parenchyma. Metabolic changes lead to an interstitium deficient in nutrients, such as glucose and amino acids, and acidification by lactic acid. Together with hypoxia, they produce functional changes in other cells of the tumor stroma, such as many immune subpopulations and endothelial cells, which lead to tumor growth. Thus, immune cells favor tissue growth through changes in immunosuppression. This review considers some of the metabolic changes described in breast cancer.


2022 ◽  
Vol 8 ◽  
Author(s):  
Silvia Ferrari ◽  
Maurizio Pesce

Calcification of the aortic valve is one of the most rapidly increasing pathologies in the aging population worldwide. Traditionally associated to cardiovascular risk conditions, this pathology is still relatively unaddressed on a molecular/cellular standpoint and there are no available treatments to retard its progression unless valve substitution. In this review, we will describe some of the most involved inflammatory players, the metabolic changes that may be responsible of epigenetic modifications and the gender-related differences in the onset of the disease. A better understanding of these aspects and their integration into a unique pathophysiology context is relevant to improve current therapies and patients management.


Author(s):  
Francisco Delgado‐Vargas ◽  
Milton Vega‐Álvarez ◽  
Alexis Landeros Sánchez ◽  
Gabriela López‐Angulo ◽  
Nancy Y. Salazar‐Salas ◽  
...  

2022 ◽  
pp. 101439
Author(s):  
Elna Dickson ◽  
Rana Soylu-Kucharz ◽  
Åsa Petersén ◽  
Maria Björkqvist

2022 ◽  
pp. 55-75
Author(s):  
Malgorzata Bukowiecka-Matusiak ◽  
Izabela Burzynska-Pedziwiatr ◽  
Lucyna A. Wozniak

2021 ◽  
pp. 1-10
Author(s):  
Seiichi Okabe ◽  
Yuko Tanaka ◽  
Akihiko Gotoh

BACKGROUND: Although Abelson (ABL) tyrosine kinase inhibitors (TKIs) have demonstrated potency against chronic myeloid leukemia (CML), resistance to ABL TKIs can develop in CML patients after discontinuation of therapy. OBJECTIVE: Glucose metabolism may be altered in CML cells because glucose is a key metabolite used by tumor cells. We investigated whether D-mannose treatment induced metabolic changes in CML cells and reduced CML growth in the presence of ABL TKIs. METHODS: We investigated whether D-mannose treatment induced metabolic changes in CML cells and reduced CML growth in the presence of ABL TKIs. RESULTS: Treatment with D-mannose for 72 h inhibited the growth of K562 cells. Combined treatment using ABL TKIs and D-mannose induced a significantly higher level of cytotoxicity in Philadelphia chromosome (Ph)-positive leukemia cells than in control cells. In the mouse model, severe toxicity was observed as evidenced by body weight loss in the ponatinib and D-mannose combination treatment groups. CONCLUSION: Our results indicate that metabolic reprogramming may be a useful strategy against Ph-positive leukemia cells. However, caution should be exercised during clinical applications.


Metabolites ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 17
Author(s):  
Qishun Zhou ◽  
Jakob Kerbl-Knapp ◽  
Fangrong Zhang ◽  
Melanie Korbelius ◽  
Katharina Barbara Kuentzel ◽  
...  

Energy metabolism, including alterations in energy intake and expenditure, is closely related to aging and longevity. Metabolomics studies have recently unraveled changes in metabolite composition in plasma and tissues during aging and have provided critical information to elucidate the molecular basis of the aging process. However, the metabolic changes in tissues responsible for food intake and lipid storage have remained unexplored. In this study, we aimed to investigate aging-related metabolic alterations in these tissues. To fill this gap, we employed NMR-based metabolomics in several tissues, including different parts of the intestine (duodenum, jejunum, ileum) and brown/white adipose tissues (BAT, WAT), of young (9–10 weeks) and old (96–104 weeks) wild-type (mixed genetic background of 129/J and C57BL/6) mice. We, further, included plasma and skeletal muscle of the same mice to verify previous results. Strikingly, we found that duodenum, jejunum, ileum, and WAT do not metabolically age. In contrast, plasma, skeletal muscle, and BAT show a strong metabolic aging phenotype. Overall, we provide first insights into the metabolic changes of tissues essential for nutrient uptake and lipid storage and have identified biomarkers for metabolites that could be further explored, to study the molecular mechanisms of aging.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 11
Author(s):  
Melis Karabulutoglu ◽  
Rosemary Finnon ◽  
Lourdes Cruz-Garcia ◽  
Mark A. Hill ◽  
Christophe Badie

Haematopoietic bone marrow cells are amongst the most sensitive to ionizing radiation (IR), initially resulting in cell death or genotoxicity that may later lead to leukaemia development, most frequently Acute Myeloid Leukaemia (AML). The target cells for radiation-induced Acute Myeloid Leukaemia (rAML) are believed to lie in the haematopoietic stem and progenitor cell (HSPC) compartment. Using the inbred strain CBA/Ca as a murine model of rAML, progress has been made in understanding the underlying mechanisms, characterisation of target cell population and responses to IR. Complex regulatory systems maintain haematopoietic homeostasis which may act to modulate the risk of rAML. However, little is currently known about the role of metabolic factors and diet in these regulatory systems and modification of the risk of AML development. This study characterises cellular proliferative and clonogenic potential as well as metabolic changes within murine HSPCs under oxidative stress and X-ray exposure. Ambient oxygen (normoxia; 20.8% O2) levels were found to increase irradiated HSPC-stress, stimulating proliferative activity compared to low oxygen (3% O2) levels. IR exposure has a negative influence on the proliferative capability of HSPCs in a dose-dependent manner (0–2 Gy) and this is more pronounced under a normoxic state. One Gy x-irradiated HSPCs cultured under normoxic conditions displayed a significant increase in oxygen consumption compared to those cultured under low O2 conditions and to unirradiated HSPCs. Furthermore, mitochondrial analyses revealed a significant increase in mitochondrial DNA (mtDNA) content, mitochondrial mass and membrane potential in a dose-dependent manner under normoxic conditions. Our results demonstrate that both IR and normoxia act as stressors for HSPCs, leading to significant metabolic deregulation and mitochondrial dysfunctionality which may affect long term risks such as leukaemia.


Sign in / Sign up

Export Citation Format

Share Document