scholarly journals Species distribution models for invasive Eurasian watermilfoil highlight the importance of data quality and limitations of discrimination accuracy metrics

2021 ◽  
Author(s):  
Shyam M. Thomas ◽  
Michael R. Verhoeven ◽  
Jake R. Walsh ◽  
Daniel J. Larkin ◽  
Gretchen J. A. Hansen
2019 ◽  
Author(s):  
Dan L. Warren ◽  
Nicholas J. Matzke ◽  
Teresa L. Iglesias

AbstractAimSpecies distribution models are used across evolution, ecology, conservation, and epidemiology to make critical decisions and study biological phenomena, often in cases where experimental approaches are intractable. Choices regarding optimal models, methods, and data are typically made based on discrimination accuracy: a model’s ability to predict subsets of species occurrence data that were withheld during model construction. However, empirical applications of these models often involve making biological inferences based on continuous estimates of relative habitat suitability as a function of environmental predictor variables. We term the reliability of these biological inferences “functional accuracy.” We explore the link between discrimination accuracy and functional accuracy.MethodsUsing a simulation approach we investigate whether models that make good predictions of species distributions correctly infer the underlying relationship between environmental predictors and the suitability of habitat.ResultsWe demonstrate that discrimination accuracy is only informative when models are simple and similar in structure to the true niche, or when data partitioning is geographically structured. However, the utility of discrimination accuracy for selecting models with high functional accuracy was low in all cases.Main conclusionsThese results suggest that many empirical studies and decisions are based on criteria that are unrelated to models’ usefulness for their intended purpose. We argue that empirical modeling studies need to place significantly more emphasis on biological insight into the plausibility of models, and that the current approach of maximizing discrimination accuracy at the expense of other considerations is detrimental to both the empirical and methodological literature in this active field. Finally, we argue that future development of the field must include an increased emphasis on simulation; methodological studies based on ability to predict withheld occurrence data may be largely uninformative about best practices for applications where interpretation of models relies on estimating ecological processes, and will unduly penalize more biologically informative modeling approaches.


2021 ◽  
Vol 13 (8) ◽  
pp. 1495
Author(s):  
Jehyeok Rew ◽  
Yongjang Cho ◽  
Eenjun Hwang

Species distribution models have been used for various purposes, such as conserving species, discovering potential habitats, and obtaining evolutionary insights by predicting species occurrence. Many statistical and machine-learning-based approaches have been proposed to construct effective species distribution models, but with limited success due to spatial biases in presences and imbalanced presence-absences. We propose a novel species distribution model to address these problems based on bootstrap aggregating (bagging) ensembles of deep neural networks (DNNs). We first generate bootstraps considering presence-absence data on spatial balance to alleviate the bias problem. Then we construct DNNs using environmental data from presence and absence locations, and finally combine these into an ensemble model using three voting methods to improve prediction accuracy. Extensive experiments verified the proposed model’s effectiveness for species in South Korea using crowdsourced observations that have spatial biases. The proposed model achieved more accurate and robust prediction results than the current best practice models.


Sign in / Sign up

Export Citation Format

Share Document