The partial realization theory of finite size two-dimensional arrays

1981 ◽  
Vol 64 (10) ◽  
pp. 1-8
Author(s):  
Tsuyoshi Matsuo ◽  
Yasumichi Hasegawa ◽  
Yoshikuni Okada
Author(s):  
Tsuyoshi Matsuo ◽  
Yasumichi Hasegawa ◽  
Yoshikuni Okada

2004 ◽  
Vol 15 (10) ◽  
pp. 1425-1438 ◽  
Author(s):  
A. SOLAK ◽  
B. KUTLU

The two-dimensional BEG model with nearest neighbor bilinear and positive biquadratic interaction is simulated on a cellular automaton, which is based on the Creutz cellular automaton for square lattice. Phase diagrams characterizing phase transitions of the model are presented for comparison with those obtained from other calculations. We confirm the existence of the tricritical points over the phase boundary for D/K>0. The values of static critical exponents (α, β, γ and ν) are estimated within the framework of the finite size scaling theory along D/K=-1 and 1 lines. The results are compatible with the universal Ising critical behavior except the points over phase boundary.


2004 ◽  
Author(s):  
Laurence Le Floc'h ◽  
Veronique Quintard ◽  
Jean-Francois Favennec ◽  
Yann G. Boucher

1993 ◽  
Vol 321 ◽  
Author(s):  
M. Li ◽  
W. L. Johnson ◽  
W. A. Goddard

ABSTRACTThermodynamic properties, structures, defects and their configurations of a two-dimensional Lennard-Jones (LJ) system are investigated close to crystal to glass transition (CGT) via molecular dynamics simulations. The CGT is achieved by saturating the LJ binary arrays below glass transition temperature with one type of the atoms which has different atomic size from that of the host atoms. It was found that for a given atomic size difference larger than a critical value, the CGT proceeds with increasing solute concentrations in three stages, each of which is characterized by distinct behaviors of translational and bond-orientational order correlation functions. An intermediate phase which has a quasi-long range orientational order but short range translational order has been found to exist prior to the formation of the amorphous phase. The destabilization of crystallinity is observed to be directly related to defects. We examine these results in the context of two dimensional (2D) melting theory. Finite size effects on these results, in particular on the intermediate phase formation, are discussed.


2003 ◽  
Vol 14 (10) ◽  
pp. 1305-1320 ◽  
Author(s):  
BÜLENT KUTLU

The two-dimensional antiferromagnetic spin-1 Ising model with positive biquadratic interaction is simulated on a cellular automaton which based on the Creutz cellular automaton for square lattice. Phase diagrams characterizing phase transition of the model are presented for a comparison with those obtained from other calculations. We confirm the existence of the intermediate phase observed in previous works for some values of J/K and D/K. The values of the static critical exponents (β, γ and ν) are estimated within the framework of the finite-size scaling theory for D/K<2J/K. Although the results are compatible with the universal Ising critical behavior in the region of D/K<2J/K-4, the model does not exhibit any universal behavior in the interval 2J/K-4<D/K<2J/K.


Sign in / Sign up

Export Citation Format

Share Document