orientational order
Recently Published Documents


TOTAL DOCUMENTS

1311
(FIVE YEARS 119)

H-INDEX

73
(FIVE YEARS 8)

Author(s):  
Wolfgang Hornfeck

A formula is presented for the generation of chiral m-fold multiply twinned two-dimensional point sets of even twin modulus m > 6 from an integer inclination sequence; in particular, it is discussed for the first three non-degenerate cases m = 8, 10, 12, which share a connection to the aperiodic crystallography of axial quasicrystals exhibiting octagonal, decagonal and dodecagonal long-range orientational order and symmetry.


2021 ◽  
Author(s):  
Shivani Krishna ◽  
Apoorva Gopinath ◽  
Somendra M. Bhattacharjee

Social insects have evolved a variety of architectural formations. Bees and wasps are well known for their ability to achieve compact structures by building hexagonal cells. Polistes wattii, an open nesting paper wasp species, builds planar hexagonal structures. Here, using the pair correlation function approach, we show that their nests exhibit short-range hexagonal order but no long-range order akin to amorphous materials. Hexagonal orientational order was well preserved globally. We also show the presence of emergent topological defects such as disclination pairs (pentagon-heptagon dipoles), Stone-Wales quadrupoles, and other higher-order defects and discuss how these defects were fixed in the nest, thereby restoring order. Furthermore, we suggest the possible role of such defects in shaping nesting architectures of other social insect species.


Nano Letters ◽  
2021 ◽  
Author(s):  
Justin C. Ondry ◽  
Layne B. Frechette ◽  
Phillip L. Geissler ◽  
A. Paul Alivisatos

2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Ralf Stannarius ◽  
Jonas Schulze

AbstractPacking problems, even of objects with regular geometries, are in general non-trivial. For few special shapes, the features of crystalline as well as random, irregular two-dimensional (2D) packing structures are known. The packing of 2D crosses does not yet belong to the category of solved problems. We demonstrate in experiments with crosses of different aspect ratios (arm width to length) which packing fractions are actually achieved by random packing, and we compare them to densest regular packing structures. We determine local correlations of the orientations and positions after ensembles of randomly placed crosses were compacted in the plane until they jam. Short-range orientational order is found over 2 to 3 cross lengths. Similarly, correlations in the spatial distributions of neighbors extend over 2 to 3 crosses. There is no simple relation between the geometries of the crosses and the peaks in the spatial correlation functions, but some features of the orientational correlations can be traced to typical local configurations.


2021 ◽  
Author(s):  
Richard Mandle ◽  
Laurence Abbott ◽  
Luma Fritsch ◽  
Rachel Parker ◽  
Sam Hart ◽  
...  

We report on the characterisation of a number of liquid-crystalline materials featuring cyclic terminal groups, which lead to significant enhancements in the temperature range of the mesomorphic state. Materials with only short terminal chains are able to support lamellar mesophase formation by appending a large terminal cyclic unit at the end of a short methylene spacer. X-ray scattering experiments reveal that the layer spacings of the lamellar smectic phase are significantly larger when a cyclic end-group is present than for equivalent linear unsubstituted materials, but there is no effect on orientational order. Fully atomistic molecular dynamics simulations faithfully reproduce experimental layer spacings and orientational order parameters, and indicate that the cyclic terminal units spontaneously segregate into diffuse sub-layers and thus cause the increased layer spacing. This shape segregation predicted by molecular dynamics simulations is observed in the crystalline solid state by X-ray diffraction.


2021 ◽  
Author(s):  
Srivastav Ranganathan ◽  
Eugene Shakhnovich

Many RNA-binding proteins (RBPs) that assemble into membraneless organelles, have a common architecture including disordered prion-like domain (PLD) and folded RNA-binding domain (RBD). An enrichment of PLD within the condensed phase gives rise to formation, on longer time scales, amyloid-like fibrils (aging). In this study, we employ coarse-grained Langevin dynamics simulations to explore the physical basis for the structural diversity in condensed phases of multi-domain RBPs. We discovered a highly cooperative first order transition between disordered (liquid-like) structures and an ordered (solid-like) phase whereby chains of PLD organize in fibrils with high nematic orientational order. Cooperativity of this liquid-solid transition makes fibril formation highly malleable to mutations or post-translational modifications. An interplay between homo-domain (PLD-PLD) and hetero-domain (PLD-RBD) interactions results in variety of structures with distinct spatial architectures. Our results provide a mechanistic understanding of how multi-domain RBPs could form assemblies with distinct structural and, potentially, material properties.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Japinder Nijjer ◽  
Changhao Li ◽  
Qiuting Zhang ◽  
Haoran Lu ◽  
Sulin Zhang ◽  
...  

AbstractIn growing active matter systems, a large collection of engineered or living autonomous units metabolize free energy and create order at different length scales as they proliferate and migrate collectively. One such example is bacterial biofilms, surface-attached aggregates of bacterial cells embedded in an extracellular matrix that can exhibit community-scale orientational order. However, how bacterial growth coordinates with cell-surface interactions to create distinctive, long-range order during biofilm development remains elusive. Here we report a collective cell reorientation cascade in growing Vibrio cholerae biofilms that leads to a differentially ordered, spatiotemporally coupled core-rim structure reminiscent of a blooming aster. Cell verticalization in the core leads to a pattern of differential growth that drives radial alignment of the cells in the rim, while the growing rim generates compressive stresses that expand the verticalized core. Such self-patterning disappears in nonadherent mutants but can be restored through opto-manipulation of growth. Agent-based simulations and two-phase active nematic modeling jointly reveal the strong interdependence of the driving forces underlying the differential ordering. Our findings offer insight into the developmental processes that shape bacterial communities and provide ways to engineer phenotypes and functions in living active matter.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012236
Author(s):  
O G Maksimova ◽  
A V Maksimov ◽  
V V Smirnov ◽  
V I Egorov ◽  
S V Osipov ◽  
...  

Abstract To study dynamic properties of a polymer coating, we consider a polymer chain with finite length. We take into account a chain bending rigidity and assume that the chain is located near an adsorbing flat surface of a solid. One part of the chain is fixed on the surface, and the second one remains free. It is supposed that the cause of chain stretching is the internal effective mean (molecular) field formed as a result of intermolecular interactions with free ends of other chains. Kinetic equations based on the Kubo method are obtained to calculate the relaxation time of the segments. The dependences of the long-range orientational order parameter and relaxation time on the adsorption parameter, the mean field coefficient and chain bending rigidity parameters are calculated. It is shown that a first-order phase transition occurs at the critical point, which is associated with a drastic change in the degree of the chain elongation. We discovered the “critical deceleration” effect, which consists in a sharp increase in the relaxation time near the critical point during the formation of surface polymer layers on the surface of a solid.


2021 ◽  
Vol 2 (4) ◽  
pp. 466-481
Author(s):  
Bhupendra Pratap Singh ◽  
Samiksha Sikarwar ◽  
Kamal Kumar Pandey ◽  
Rajiv Manohar ◽  
Michael Depriester ◽  
...  

In this paper, we investigate a commercial nematic liquid crystal (LC) mixture namely E7 dispersed with small concentrations of multi-walled carbon nanotubes (MWCNTs). The dielectric and electro-optical characterizations have been carried out in the homogeneously and vertically aligned LC cells. The electro-optical response of LC molecules has been enhanced by 60% after the addition of MWCNTs, which is attributed to the reduced rotational viscosity in the composites. MWCNTs act like barricades for ionic impurities by reducing them up to ∼34.3% within the dispersion limit of 0.05 wt%. The nematic–isotropic phase transition temperature (TNI) of the E7 LC has also been shifted towards the higher temperature, resulting in a more ordered nematic phase. The enhanced birefringence and orientational order parameter in the LC-MWCNTs are attributed to π-π electron stacking between the LC molecules and the MWCNTs. The outlined merits of the LC-MWCNTs composites evince their suitability for ultrafast nematic-based electro-optical devices.


Sign in / Sign up

Export Citation Format

Share Document