atomic size
Recently Published Documents


TOTAL DOCUMENTS

328
(FIVE YEARS 42)

H-INDEX

42
(FIVE YEARS 4)

2022 ◽  
Vol 210 ◽  
pp. 114470
Author(s):  
Pramote Thirathipviwat ◽  
Shigeo Sato ◽  
Gian Song ◽  
Jozef Bednarcik ◽  
Kornelius Nielsch ◽  
...  

Matter ◽  
2022 ◽  
Author(s):  
Kunpeng Zhao ◽  
Chenxi Zhu ◽  
Wujie Qiu ◽  
Shiqi Yang ◽  
Hong Su ◽  
...  
Keyword(s):  

Author(s):  
Владимир Сергеевич Мясниченко ◽  
Павел Михайлович Ершов ◽  
Ксения Геннадьевна Савина ◽  
Алексей Дмитриевич Веселов ◽  
Сергей Сергеевич Богданов ◽  
...  

В данной работе исследуются закономерности структурообразования на примере биметаллических наночастиц Au - Ag, Ti - Al, Ti - V. Данные биметаллические наночастицы обладают различным размерным несоответствием и различной температурой кристаллизации. Проведены серии молекулярно-динамических экспериментов, по результатам которых проанализированы конечные конфигурации с наименьшей энергией и получены концентрационные зависимости энергии смешения. Анализ концентрационных зависимостей энергии смешения позволяет прогнозировать составы и размеры биметаллических наночастиц, которые могут проявлять нестабильность, как например для биметаллических наночастиц Ti - V. Асимметричность отдельных концентрационных зависимостей энергии смешения свидетельствуют о специфических структурных превращениях, характерных именно для данного состава и размера. Установлено, что для биметаллических наночастиц Au - Ag, Ti - Al характерна структурная сегрегация, и она активно проявляется при малых концентрациях более легкоплавкого компонента. Конкурирующими фазами в данном случае выступают ГЦК и ГПУ фазы. Кроме того, для средних из рассматриваемых в статье размеров исследована зависимость температуры кристаллизации от состава биметаллических наночастиц. In this work, of the structure formation was investigated using Au - Ag, Ti - Al, Ti - V bimetallic nanoparticles as the patterns. These bimetallic nanoparticles have different atomic size mismatches and different crystallization temperatures. A series of molecular dynamics experiments was carried out. Based on their results, the final configurations with the lowest energy were analyzed and the concentration dependences of the mixing energy were obtained. An analysis of the concentration dependences of the mixing energy makes it possible to predict the compositions and sizes of bimetallic nanoparticles, which can exhibit instability, such as for Ti - V bimetallic nanoparticles. The asymmetry of individual concentration dependences of the mixing energy is evidence of specific structural transformations characteristic for the given composition and size. It has been established that structural segregation is characteristic for Au - Ag,Ti - Al bimetallic nanoparticles and it is actively manifested at low concentrations of a more low-melting component. The competing phases in this case are fcc and hcp phases. In addition, for the average sizes considered in the article, the dependence of the crystallization temperature on the composition of bimetallic nanoparticles was investigated.


2021 ◽  
Vol 59 (12) ◽  
pp. 857-869
Author(s):  
Kook Noh Yoon ◽  
Hyun Seok Oh ◽  
Je In Lee ◽  
Eun Soo Park

In this study we developed a novel (TRIP+TWIP) high entropy alloy (HEA) with high specific strength and large ductility. First, by controlling the atomic constitution of the 3d transition metals (Cr, Mn, Fe, Co, and Ni), we designed a light-weight TRIP-assisted dual-phase HEA with a non-equiatomic composition of Cr22Mn6Fe40Co26Ni6, which exhibited 5% lighter density than the Cantor HEA. Secondly, we systematically added Al (a lightweight element (2.7 g/cm3), which has a large atomic size misfit with 3d transition metals, and Ferrite stabilizer) up to 5 at.% in Cr22Mn6Fe40Co26Ni6 HEA. With increasing Al content, the phase constitution of the alloy changed from a dual-phase of FCC and HCP (0 to 2.0 at.%) to a FCC single-phase (2.5 to 3.5 at.%), to a dual-phase of FCC and BCC (4.0 to 5.0 at.%). In particular, the (Cr22Mn6Fe40Co26Ni6)97.5Al2.5 HEA with the FCC single-phase exhibited a large Hall-Petch coefficient and relatively lower thermal conductivity due to its three times larger atomic size mismatch (δ) than the Cantor HEA, which causes the superior solid solution strengthening effect. Furthermore, the (Cr22Mn6Fe40Co26Ni6)96Al4.0 HEA, a boundary composition of BCC precipitation in the FCC phase, exhibited a 10% higher specific strength than the Cantor HEA as well as 50% larger strain, due to the unique TRIP and TWIP complex deformation mechanism. This result shows that the addition of Al in Cr22Mn6Fe40Co26Ni6 HEA can result not only in greater chemical complexity due to the multicomponent high entropy compositions, but also microstructural complexity due to the increase in competing crystalline phases. The confusion effect caused by both complexities lets the alloy overcome the trade-off relationship among conflicting intrinsic properties, such as strength versus ductility (or density). Consequently, these results pave the way for a new design strategy of a novel (TRIP+TWIP) HEA with high specific strength and large ductility.


Author(s):  
Abhishek Kumar Adak ◽  
Devina Sharma ◽  
Shobhana Narasimhan

Abstract We have performed density functional theory calculations to study blue phosphorene and black phosphorene on metal substrates. The substrates considered are the (111) and (110) surfaces of Al, Cu, Ag, Ir, Pd, Pt and Au and the (0001) and (10$\bar{1}$0) surfaces of Zr and Sc. The formation energy $E_{\rm F}$ is negative (energetically favorable) for all 36 combinations of overlayer and substrate. By comparing values of $\Delta{\Omega}$, the change in free energy per unit area, as well as the overlayer-substrate binding energy $E_{\rm b}$, we identify that Ag(111), Al(110), Cu(111), Cu(110) and possibly Au(110) may be especially suitable substrates for the synthesis and subsequent exfoliation of blue phosphorene, and the Ag(110) and Al(111) substrates for the synthesis of black phosphorene. However, these conclusions are drawn assuming the source of P atoms is bulk phosphorus, and can alter upon changing synthesis conditions (chemical potential of phosphorus). Thus, when the source of phosphorus atoms is P$_4$, blue phosphorene is favored only over Pt(111). We find that for all combinations of overlayer and substrate, the charge transfer per bond can be captured by the universal descriptor $\mathcal{D} = \Delta \chi/\Delta \mathcal{R}$, where $\Delta \chi$ and $\Delta \mathcal{R}$ are, respectively, the differences in electronegativity and atomic size between phosphorus and the substrate metal.


2021 ◽  
Author(s):  
Lok Pokhrel ◽  
Zachary Jacobs ◽  
Dmitriy Dikin ◽  
Shaw Akula

Abstract To tackle growing antibiotic resistance (AR) and hospital-acquired infections (HAIs), novel antimicrobials are warranted that are effective against HAIs and safer for human use. We hypothesize that near-atomic size positively charged silver nanoparticles (AgNPs) could specifically target bacterial cell wall and adherent fimbriae expression, serving as the next generation antimicrobial agent. Herein we show positively charged, 5 nm NH2–AgNPs were bactericidal; negatively charged, 45 nm Citrate–AgNPs were nontoxic; and Ag+ ions were bacteriostatic forming honeycomb-like potentially resistant phenotype, at 10µg Ag/mL in E. coli dh5a. Further, adherent fimbriae were expressed with Citrate–AgNPs, whereas NH2–AgNPs (0.5–10µg/mL) or Ag+ ions (10µg/mL) inhibited fimbriae expression. Potent bactericidal effects demonstrated by biocompatible NH2–AgNPs and the lack of toxicity of Citrate–AgNPs lend credence to the hypothesis that near-atomic size, positively charged AgNPs may serve as a next-generation antibacterial agent, potentially addressing the rising HAIs and patient health and safety.


2021 ◽  
Vol 9 (2) ◽  
pp. 14
Author(s):  
Orwa Houshia ◽  
Harbi Daraghmeh ◽  
Naba Abuhafez ◽  
Ahmad Abdelraouf Jrar

The periodic table of chemistry contains all synthetic and naturally occurring elements. The elements are arranged in seven horizontal periods from left to right with increasing atomic number. The periodic table is divided into two groups: metals and nonmetals, within elements moving from left to right, the elements get less metallic, culminating in nonmetals on the far right side of the table. Further, the elements are also arranged in eight vertical columns or groups for those with similar physical and chemical properties. A model equation has been developed based on the 8-group and the 7-periods from which trends of elements has been calculated. Among the trends in the periodic table that were calculated are ionization energy, atomic size and effective nuclear charge. It has been discovered that the calculated theoretical values from the model equation rhyme well with the actual values for each element with few exceptions.


Matter ◽  
2021 ◽  
Vol 4 (8) ◽  
pp. 2618-2619
Author(s):  
Kunpeng Zhao ◽  
Allen Benton ◽  
Fangfang Xu ◽  
Xun Shi ◽  
Jian He
Keyword(s):  

Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 906
Author(s):  
Erdong Lu ◽  
Jonathan S. Van Van Buskirk ◽  
Jingxiang Cheng ◽  
Daniel C. Fredrickson

The tight atomic packing generally exhibited by alloys and intermetallics can create the impression of their being composed of hard spheres arranged to maximize their density. As such, the atomic size factor has historically been central to explanations of the structural chemistry of these systems. However, the role atomic size plays structurally has traditionally been inferred from empirical considerations. The recently developed DFT-Chemical Pressure (CP) analysis has opened a path to investigating these effects with theory. In this article, we provide a step-by-step tutorial on the DFT-CP method for non-specialists, along with advances in the approach that broaden its applicability. A new version of the CP software package is introduced, which features an interactive system that guides the user in preparing the necessary electronic structure data and generating the CP scheme, with the results being readily visualized with a web browser (and easily incorporated into websites). For demonstration purposes, we investigate the origins of the crystal structure of K3Au5Tl, which represents an intergrowth of Laves and Zintl phase domains. Here, CP analysis reveals that the intergrowth is supported by complementary CP features of NaTl-type KTl and MgCu2-type KAu2 phases. In this way, K3Au5Tl exemplifies how CP effects can drive the merging for geometrical motifs derived from different families of intermetallics through a mechanism referred to as epitaxial stabilization.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4197
Author(s):  
Helena Zapolsky ◽  
Antoine Vaugeois ◽  
Renaud Patte ◽  
Gilles Demange

In the present work, atomistic modeling based on the quasiparticle approach (QA) was performed to establish general trends in the segregation of solutes with different atomic size at symmetric ⟨100⟩ tilt grain boundaries (GBs) in α-Fe. Three types of solute atoms X1, X2 and X3 were considered, with atomic radii smaller (X1), similar (X2) and larger (X3) than iron atoms, respectively, corresponding to phosphorus (P), antimony (Sb) and tin (Sn). With this, we were able to evidence that segregation is dominated by atomic size and local hydrostatic stress. For low angle GBs, where the elastic field is produced by dislocation walls, X1 atoms segregate preferentially at the limit between compressed and dilated areas. Contrariwise, the positions of X2 atoms at GBs reflect the presence of tensile and compressive areal regions, corresponding to extremum values of the σXX and σYY components of the strain tensor. Regarding high angle GBs Σ5 (310) (θ = 36.95°) and Σ29 (730), it was found that all three types of solute atoms form Fe9X clusters within B structural units (SUs), albeit being deformed in the case of larger atoms (X2 and X3). In the specific case of Σ29 (730) where the GB structure can be described by a sequence of |BC.BC| SUs, it was also envisioned that the C SU can absorb up to four X1 atoms vs. one X2 or X3 atom only. Moreover, a depleted zone was observed in the vicinity of high angle GBs for X2 or X3 atoms. The significance of this research is the development of a QA methodology capable of ascertaining the atomic position of solute atoms for a wide range of GBs, as a mean to highlight the impact of the solute atoms’ size on their locations at and near GBs.


Sign in / Sign up

Export Citation Format

Share Document