scholarly journals Intraspecific diversity at two trophic levels influences plant–herbivore interactions

Ecosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Akana E. Noto ◽  
A. Randall Hughes
2013 ◽  
Vol 9 (3) ◽  
pp. 20130133 ◽  
Author(s):  
Xoaquín Moreira ◽  
Kailen A. Mooney

While the ecological consequences of plant diversity have received much attention, the mechanisms by which intraspecific diversity affects associated communities remains understudied. We report on a field experiment documenting the effects of patch diversity in the plant Baccharis salicifolia (genotypic monocultures versus polycultures of four genotypes), ants (presence versus absence) and their interaction on ant-tended aphids, ants and parasitic wasps, and the mechanistic pathways by which diversity influences their multi-trophic interactions. Five months after planting, polycultures (versus monocultures) had increased abundances of aphids (threefold), ants (3.2-fold) and parasitoids (1.7-fold) owing to non-additive effects of genetic diversity. The effect on aphids was direct, as plant genetic diversity did not mediate ant–aphid, parasitoid–aphid or ant–parasitoid interactions. This increase in aphid abundance occurred even though plant growth (and thus aphid resources) was not higher in polycultures. The increase in ants and parasitoids was an indirect effect, due entirely to higher aphid abundance. Ants reduced parasitoid abundance by 60 per cent, but did not affect aphid abundance or plant growth, and these top-down effects were equivalent between monocultures and polycultures. In summary, intraspecific plant diversity did not increase primary productivity, but nevertheless had strong effects across multiple trophic levels, and effects on both herbivore mutualists and enemies could be predicted entirely as an extension of plant–herbivore interactions.


2017 ◽  
Vol 106 (1) ◽  
pp. 347-356 ◽  
Author(s):  
Wei Huang ◽  
Elias Zwimpfer ◽  
Maxime R. Hervé ◽  
Zoe Bont ◽  
Matthias Erb

2021 ◽  
Author(s):  
Meret Huber ◽  
Thomas Roder ◽  
Sandra Irmisch ◽  
Alexander Riedel ◽  
Saskia Gablenz ◽  
...  

Gut enzymes can metabolize plant defense metabolites and thereby affect the growth and fitness of insect herbivores. Whether these enzymes also influence herbivore behavior and feeding preference is largely unknown. We studied the metabolization of taraxinic acid β-D-glucopyranosyl ester (TA-G), a sesquiterpene lactone of the common dandelion (Taraxacum officinale) that deters its major root herbivore, the common cockchafer larva (Melolontha melolontha). We demonstrate that TA-G is rapidly deglycosylated and conjugated to glutathione in the insect gut. A broad-spectrum M. melolontha β-glucosidase, Mm_bGlc17, is sufficient and necessary for TA-G deglycosylation. Using plants and insect RNA interference, we show that Mm_bGlc17 reduces TA-G toxicity. Furthermore, Mm_bGlc17 is required for the preference of M. melolontha larvae for TA-G deficient plants. Thus, herbivore metabolism modulates both the toxicity and deterrence of a plant defense metabolite. Our work illustrates the multifacteted roles of insect digestive enzymes as mediators of plant-herbivore interactions.


Author(s):  
Ivan Galis ◽  
Meredith C. Schuman ◽  
Klaus Gase ◽  
Christian Hettenhausen ◽  
Markus Hartl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document