sensory biology
Recently Published Documents


TOTAL DOCUMENTS

77
(FIVE YEARS 15)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 31 (24) ◽  
pp. R1570-R1573
Author(s):  
Hojoon Lee ◽  
Michael H. Alpert ◽  
Marco Gallio
Keyword(s):  

2021 ◽  
Vol 224 (19) ◽  
Author(s):  
Maiah E. M. Devereaux ◽  
Kevin L. Campbell ◽  
Daniel Munro ◽  
Pierre U. Blier ◽  
Matthew E. Pamenter

ABSTRACT Star-nosed moles (Condylura cristata) have an impressive diving performance and burrowing lifestyle, yet no ventilatory data are available for this or any other talpid mole species. We predicted that, like many other semi-aquatic and fossorial small mammals, star-nosed moles would exhibit: (i) a blunted (i.e. delayed or reduced) hypoxic ventilatory response, (ii) a reduced metabolic rate and (iii) a lowered body temperature (Tb) in hypoxia. We thus non-invasively measured these variables from wild-caught star-nosed moles exposed to normoxia (21% O2) or acute graded hypoxia (21–6% O2). Surprisingly, star-nosed moles did not exhibit a blunted HVR or decreased Tb in hypoxia, and only manifested a significant, albeit small (<8%), depression of metabolic rate at 6% O2 relative to normoxic controls. Unlike small rodents inhabiting similar niches, star-nosed moles are thus intolerant to hypoxia, which may reflect an evolutionary trade-off favouring the extreme sensory biology of this unusual insectivore.


2021 ◽  
Vol 31 (18) ◽  
pp. R1074-R1076
Author(s):  
Gareth Jones
Keyword(s):  

2021 ◽  
pp. 47-64
Author(s):  
Kara E. Yopak ◽  
Emily E. Peele
Keyword(s):  

Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2419
Author(s):  
Robert Dudley ◽  
Aleksey Maro

The “drunken monkey” hypothesis posits that attraction to ethanol derives from an evolutionary linkage among the sugars of ripe fruit, associated alcoholic fermentation by yeast, and ensuing consumption by human ancestors. First proposed in 2000, this concept has received increasing attention from the fields of animal sensory biology, primate foraging behavior, and molecular evolution. We undertook a review of English language citations subsequent to publication of the original paper and assessed research trends and future directions relative to natural dietary ethanol exposure in primates and other animals. Two major empirical themes emerge: attraction to and consumption of fermenting fruits (and nectar) by numerous vertebrates and invertebrates (e.g., Drosophila flies), and genomic evidence for natural selection consistent with sustained exposure to dietary ethanol in diverse taxa (including hominids and the genus Homo) over tens of millions of years. We also describe our current field studies in Uganda of ethanol content within fruits consumed by free-ranging chimpanzees, which suggest chronic low-level exposure to this psychoactive molecule in our closest living relatives.


Science ◽  
2021 ◽  
Vol 373 (6551) ◽  
pp. 226-231 ◽  
Author(s):  
Yasuka Toda ◽  
Meng-Ching Ko ◽  
Qiaoyi Liang ◽  
Eliot T. Miller ◽  
Alejandro Rico-Guevara ◽  
...  

Early events in the evolutionary history of a clade can shape the sensory systems of descendant lineages. Although the avian ancestor may not have had a sweet receptor, the widespread incidence of nectar-feeding birds suggests multiple acquisitions of sugar detection. In this study, we identify a single early sensory shift of the umami receptor (the T1R1-T1R3 heterodimer) that conferred sweet-sensing abilities in songbirds, a large evolutionary radiation containing nearly half of all living birds. We demonstrate sugar responses across species with diverse diets, uncover critical sites underlying carbohydrate detection, and identify the molecular basis of sensory convergence between songbirds and nectar-specialist hummingbirds. This early shift shaped the sensory biology of an entire radiation, emphasizing the role of contingency and providing an example of the genetic basis of convergence in avian evolution.


2021 ◽  
Vol 90 (1) ◽  
pp. 507-534
Author(s):  
Marcin Szczot ◽  
Alec R. Nickolls ◽  
Ruby M. Lam ◽  
Alexander T. Chesler

Mechanosensation is the ability to detect dynamic mechanical stimuli (e.g., pressure, stretch, and shear stress) and is essential for a wide variety of processes, including our sense of touch on the skin. How touch is detected and transduced at the molecular level has proved to be one of the great mysteries of sensory biology. A major breakthrough occurred in 2010 with the discovery of a family of mechanically gated ion channels that were coined PIEZOs. The last 10 years of investigation have provided a wealth of information about the functional roles and mechanisms of these molecules. Here we focus on PIEZO2, one of the two PIEZO proteins found in humans and other mammals. We review how work at the molecular, cellular, and systems levels over the past decade has transformed our understanding of touch and led to unexpected insights into other types of mechanosensation beyond the skin.


2021 ◽  
Author(s):  
Irving J. May-Concha ◽  
Maryrose J. Escalante Talavera ◽  
Jean-Pierre Dujardin ◽  
Etienne Waleckx

Abstract Background: Triatoma dimidiata is a vector of the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease. Phenotypic plasticity allows an organism to adjust its phenotype in response to stimuli or environmental conditions. Understanding the effect of T. cruzi on the phenotypic plasticity of its vectors, known as triatomines, has attracted great interest because of the implications of the parasite-triatomine interactions in the eco-epidemiology and transmission of the parasite. We investigated whether the infection of the vector with T. cruzi can change the antennal phenotype of sylvatic, domestic, and laboratory-reared populations of T. dimidiata. Methods: The abundance of each type of sensillum (bristles, basiconic, thick- and thin-walled trichoid) on the antennae of T. cruzi-infected and non-infected T. dimidiata reared in the laboratory or collected in sylvatic and domestic ecotopes were measured under light microscopy and compared using Kruskal–Wallis non-parametric tests and Permutational Multivariate Analysis of Variance. Results: We found significant differences between sensilla patterns of infected and non-infected insects within sylvatic and domestic populations. Conversely, we found no significant differences between sensilla patterns of infected and non-infected insects within the laboratory-reared population. Besides, our results show that the infection with T. cruzi affects the sexual dimorphism linked to antennal phenotype in sylvatic and domestic populations. Conclusion: These differences could be linked, for infected insects, to higher efficiency in the perception of odor molecules related to the search of distant mates and hosts and for flight dispersal in search of new habitats, and the possibility of a positive effect on population dynamics and on the vectorial transmission of T. cruzi.


Author(s):  
Mathilde Paris ◽  
Carsten Wolff ◽  
Nipam Patel ◽  
Michalis Averof

Arthropods are the most abundant and diverse animals on earth. Among them, pancrustaceans are an ancient and morphologically diverse group, comprising a wide range of aquatic and semi-aquatic crustaceans as well as the insects, which emerged from crustacean ancestors to colonise most terrestrial habitats. Within insects, Drosophila stands out as one of the most powerful animal models, making major contributions to our understanding of development, physiology and behaviour. Given these attributes, crustaceans provide a fertile ground for exploring biological diversity through comparative studies. However, beyond insects, few crustaceans are developed sufficiently as experimental models to enable such studies. The marine amphipod Parhyale hawaiensis is currently the best established crustacean system, offering year-round accessibility to developmental stages, transgenic tools, genomic resources, and established genetics and imaging approaches. The Parhyale research community is small but diverse, investigating the evolution of development, regeneration, aspects of sensory biology, chronobiology, bioprocessing and ecotoxicology.


2021 ◽  
Vol 118 (20) ◽  
pp. e2021426118
Author(s):  
Nishan Shettigar ◽  
Anirudh Chakravarthy ◽  
Suchitta Umashankar ◽  
Vairavan Lakshmanan ◽  
Dasaradhi Palakodeti ◽  
...  

The ability to respond to light has profoundly shaped life. Animals with eyes overwhelmingly rely on their visual circuits for mediating light-induced coordinated movements. Building on previously reported behaviors, we report the discovery of an organized, eye-independent (extraocular), body-wide photosensory framework that allows even a head-removed animal to move like an intact animal. Despite possessing sensitive cerebral eyes and a centralized brain that controls most behaviors, head-removed planarians show acute, coordinated ultraviolet-A (UV-A) aversive phototaxis. We find this eye–brain-independent phototaxis is mediated by two noncanonical rhabdomeric opsins, the first known function for this newly classified opsin-clade. We uncover a unique array of dual-opsin–expressing photoreceptor cells that line the periphery of animal body, are proximal to a body-wide nerve net, and mediate UV-A phototaxis by engaging multiple modes of locomotion. Unlike embryonically developing cerebral eyes that are functional when animals hatch, the body-wide photosensory array matures postembryonically in “adult-like animals.” Notably, apart from head-removed phototaxis, the body-wide, extraocular sensory organization also impacts physiology of intact animals. Low-dose UV-A, but not visible light (ocular-stimulus), is able to arouse intact worms that have naturally cycled to an inactive/rest-like state. This wavelength selective, low-light arousal of resting animals is noncanonical-opsin dependent but eye independent. Our discovery of an autonomous, multifunctional, late-maturing, organized body-wide photosensory system establishes a paradigm in sensory biology and evolution of light sensing.


Sign in / Sign up

Export Citation Format

Share Document