scholarly journals Forest recovery following synchronous outbreaks of spruce and western balsam bark beetle is slowed by ungulate browsing

Ecology ◽  
2020 ◽  
Vol 101 (5) ◽  
Author(s):  
Robert A. Andrus ◽  
Sarah J. Hart ◽  
Thomas T. Veblen

2020 ◽  
Vol 12 (12) ◽  
pp. 1914 ◽  
Author(s):  
Josef Lastovicka ◽  
Pavel Svec ◽  
Daniel Paluba ◽  
Natalia Kobliuk ◽  
Jan Svoboda ◽  
...  

In this article, we investigated the detection of forest vegetation changes during the period of 2017 to 2019 in the Low Tatras National Park (Slovakia) and the Sumava National Park (Czechia) using Sentinel-2 data. The evaluation was based on a time-series analysis using selected vegetation indices. The case studies represented five different areas according to the type of the forest vegetation degradation (one with bark beetle calamity, two areas with forest recovery mode after a bark beetle calamity, and two areas without significant disturbances). The values of the trajectories of the vegetation indices (normalized difference vegetation index (NDVI) and normalized difference moisture index (NDMI)) and the orthogonal indices (tasseled cap greenness (TCG) and tasseled cap wetness (TCW)) were analyzed and validated by in situ data and aerial photographs. The results confirm the abilities of the NDVI, the NDMI and the TCW to distinguish disturbed and undisturbed areas. The NDMI vegetation index was particularly useful for the detection of the disturbed forest and forest recovery after bark beetle outbreaks and provided relevant information regarding the health of the forest (the individual stages of the disturbances and recovery mode). On the contrary, the TCG index demonstrated only limited abilities. The TCG could distinguish healthy forest and the gray-attack disturbance phase; however, it was difficult to use this index for detecting different recovery phases and to distinguish recovery phases from healthy forest. The areas affected by the disturbances had lower values of NDVI and NDMI indices (NDVI quartile range Q2–Q3: 0.63–0.71; NDMI Q2–Q3: 0.10–0.19) and the TCW index had negative values (Q2–Q3: −0.06–−0.05)). The analysis was performed with a cloud-based tool—Sentinel Hub. Cloud-based technologies have brought a new dimension in the processing and analysis of satellite data and allowed satellite data to be brought to end-users in the forestry sector. The Copernicus program and its data from Sentinel missions have evoked new opportunities in the application of satellite data. The usage of Sentinel-2 data in the research of long-term forest vegetation changes has a high relevance and perspective due to the free availability, distribution, and well-designed spectral, temporal, and spatial resolution of the Sentinel-2 data for monitoring forest ecosystems.



2021 ◽  
Vol 13 (19) ◽  
pp. 3873
Author(s):  
Vladimír Falťan ◽  
František Petrovič ◽  
Marián Gábor ◽  
Vladimír Šagát ◽  
Matej Hruška

High winds and the subsequent infestation of subcortical insect are considered to be the most extensive types of large natural disturbances in the Central European forests. In this paper, we focus on the landscape dynamics of two representative mountain areas of Slovakia, which have been affected by aforementioned natural disturbances during last two decades. For example, on 19 November 2004, the bora caused significant damage to more than 126 km2 of spruce forests in the Tatra National Park (TANAP). Several wind-related events also affected sites in the National Park Low Tatras (NAPALT). Monitoring of related land cover changes during years 2000–2019 was based on CORINE Land Cover data and methodology set up on satellite and aerial images interpretation, on detailed land cover interpretation (1:10,000) for the local case studies, as well as on the results of field research and forestry databases. The dynamics of forest recovery are different in the clear-cuts (usually with subsequent tree planting) and in the naturally developing forest. The area in the vicinity of Tatranská Lonmnica encroaching on the Studená dolina National Nature Reserve in TANAP represents a trend of the gradual return of young forest. The area of Čertovica on the border between NAPALT and its buffer zone are characterized by an increase in clear-cut sites with potentially increasing soil erosion risk, due to repeated wind disasters and widening of bark beetle. Proposed detailed, large-scale approach is being barely used, when considering recent studies dealing with the natural disturbances.



2021 ◽  
Vol 657 ◽  
pp. 59-71
Author(s):  
BA Beckley ◽  
MS Edwards

The forest-forming giant kelp Macrocystis pyrifera and the communities it supports have been decreasing across their native ranges in many parts of the world. The sudden removal of giant kelp canopies by storms increases space and light for the colonization by understory macroalgae, such as Desmarestia herbacea, which can inhibit M. pyrifera recovery and alter local community composition. Understanding the mechanisms by which algae such as D. herbacea interact with M. pyrifera can provide insight into patterns of kelp forest recovery following these disturbances and can aid in predicting future community structure. This study experimentally tested the independent and combined effects of two likely competitive mechanisms by which D. herbacea might inhibit recovery of M. pyrifera in the Point Loma kelp forest in San Diego, California (USA). Specifically, we conducted field experiments to study the individual and combined effects of shade and scour by D. herbacea on the survival of M. pyrifera microscopic life stages, and the recruitment, survival, and growth of its young sporophytes. Our results show that scour had the strongest negative effect on the survival of M. pyrifera microscopic life stages and recruitment, but shade and scour both adversely affected survival and growth of these sporophytes as they grew larger. Canopy-removing storms are increasing in frequency and intensity, and this change could facilitate the rise of understory species, like D. herbacea, which might alter community succession and recovery of kelp forests.



2016 ◽  
Author(s):  
Michael J. Wingfield
Keyword(s):  




Author(s):  
Charles C. Rhoades ◽  
Robert M. Hubbard ◽  
Paul R. Hood ◽  
Banning J. Starr ◽  
Daniel B. Tinker ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document