giant kelp
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 46)

H-INDEX

43
(FIVE YEARS 6)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0257933
Author(s):  
Henry F. Houskeeper ◽  
Isaac S. Rosenthal ◽  
Katherine C. Cavanaugh ◽  
Camille Pawlak ◽  
Laura Trouille ◽  
...  

Giant kelp populations that support productive and diverse coastal ecosystems at temperate and subpolar latitudes of both hemispheres are vulnerable to changing climate conditions as well as direct human impacts. Observations of giant kelp forests are spatially and temporally uneven, with disproportionate coverage in the northern hemisphere, despite the size and comparable density of southern hemisphere kelp forests. Satellite imagery enables the mapping of existing and historical giant kelp populations in understudied regions, but automating the detection of giant kelp using satellite imagery requires approaches that are robust to the optical complexity of the shallow, nearshore environment. We present and compare two approaches for automating the detection of giant kelp in satellite datasets: one based on crowd sourcing of satellite imagery classifications and another based on a decision tree paired with a spectral unmixing algorithm (automated using Google Earth Engine). Both approaches are applied to satellite imagery (Landsat) of the Falkland Islands or Islas Malvinas (FLK), an archipelago in the southern Atlantic Ocean that supports expansive giant kelp ecosystems. The performance of each method is evaluated by comparing the automated classifications with a subset of expert-annotated imagery (8 images spanning the majority of our continuous timeseries, cumulatively covering over 2,700 km of coastline, and including all relevant sensors). Using the remote sensing approaches evaluated herein, we present the first continuous timeseries of giant kelp observations in the FLK region using Landsat imagery spanning over three decades. We do not detect evidence of long-term change in the FLK region, although we observe a recent decline in total canopy area from 2017–2021. Using a nitrate model based on nearby ocean state measurements obtained from ships and incorporating satellite sea surface temperature products, we find that the area of giant kelp forests in the FLK region is positively correlated with the nitrate content observed during the prior year. Our results indicate that giant kelp classifications using citizen science are approximately consistent with classifications based on a state-of-the-art automated spectral approach. Despite differences in accuracy and sensitivity, both approaches find high interannual variability that impedes the detection of potential long-term changes in giant kelp canopy area, although recent canopy area declines are notable and should continue to be monitored carefully.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258919
Author(s):  
Henry M. Page ◽  
Juliann Schamel ◽  
Kyle A. Emery ◽  
Nicholas K. Schooler ◽  
Jenifer E. Dugan ◽  
...  

The coastal zone provides foraging opportunities for insular populations of terrestrial mammals, allowing for expanded habitat use, increased dietary breadth, and locally higher population densities. We examined the use of sandy beach resources by the threatened island fox (Urocyon littoralis) on the California Channel Islands using scat analysis, surveys of potential prey, beach habitat attributes, and stable isotope analysis. Consumption of beach invertebrates, primarily intertidal talitrid amphipods (Megalorchestia spp.) by island fox varied with abundance of these prey across sites. Distance-based linear modeling revealed that abundance of giant kelp (Macrocystis pyrifera) wrack, rather than beach physical attributes, explained the largest amount of variation in talitrid amphipod abundance and biomass across beaches. δ13C and δ15N values of fox whisker (vibrissae) segments suggested individualism in diet, with generally low δ13C and δ15N values of some foxes consistent with specializing on primarily terrestrial foods, contrasting with the higher isotope values of other individuals that suggested a sustained use of sandy beach resources, the importance of which varied over time. Abundant allochthonous marine resources on beaches, including inputs of giant kelp, may expand habitat use and diet breadth of the island fox, increasing population resilience during declines in terrestrial resources associated with climate variability and long-term climate change.


Oikos ◽  
2021 ◽  
Author(s):  
Heili E. Lowman ◽  
Kyle A. Emery ◽  
Jenifer E. Dugan ◽  
Robert J. Miller

2021 ◽  
Vol 168 (11) ◽  
Author(s):  
Tiffany Hiroko Cedeno ◽  
Mark A. Brzezinski ◽  
Robert J. Miller ◽  
Daniel C. Reed

2021 ◽  
Author(s):  
Henry F. Houskeeper ◽  
Isaac S. Rosenthal ◽  
Katherine C. Cavanaugh ◽  
Camille Pawlak ◽  
Laura Trouille ◽  
...  

AbstractGiant kelp populations support productive and diverse coastal ecosystems in both hemispheres at temperate and subpolar latitudes but are vulnerable to changing climate conditions as well as direct human impacts. Observations of giant kelp forests are spatially and temporally patchy, with disproportionate coverage in the northern hemisphere, despite the size and comparable density of southern hemisphere kelp forests. Satellite imagery enables the mapping of existing and historical giant kelp populations in understudied regions, but automating the detection of giant kelp in large satellite datasets requires approaches that are robust to the optical complexity of the shallow, nearshore environment. We present and compare two approaches for automating the detection of giant kelp in satellite datasets: one based on crowd sourcing of satellite imagery classifications and another based on a decision tree paired with a spectral unmixing algorithm (automated using Google Earth Engine). Both approaches are applied to satellite imagery (Landsat) of the Falkland Islands or Islas Malvinas (FLK), an archipelago in the southern Atlantic Ocean that supports expansive giant kelp ecosystems. The performance of each method is evaluated by comparing the automated classifications with a subset of expert-annotated imagery cumulatively spanning over 2,700km of coastline. Using the remote sensing approaches evaluated herein, we present the first continuous timeseries of giant kelp observations in the FLK region using Landsat imagery spanning over three decades. We do not detect evidence of long-term change in the FLK region, although we observe a recent decline in total canopy area from 2017-2021. Using a nitrate model based on nearby ocean state measurements obtained from ships and incorporating satellite sea surface temperature products, we find that the area of giant kelp forests in the FLK region is positively correlated with the nitrate content observed during the prior year. Our results indicate that giant kelp classifications using citizen science are approximately consistent with classifications based on a state-of-the-art automated spectral approach. Despite differences in accuracy and sensitivity, both approaches find high interannual variability that impedes the detection of potential long-term changes in giant kelp canopy area, although recent canopy area declines are notable and should continue to be monitored carefully.


2021 ◽  
Vol 8 ◽  
Author(s):  
Leigh W. Tait ◽  
François Thoral ◽  
Matthew H. Pinkerton ◽  
Mads S. Thomsen ◽  
David R. Schiel

Marine heatwaves (MHW) are becoming stronger and more frequent across the globe. MHWs affect the thermal physiology of all biological organisms, but wider ecosystem effects are particularly impactful when large habitat-forming foundation species such as kelps are affected. Many studies on impacts from MHWs on kelps have focused on temperature effects in isolation, except for a few studies that have integrated co-occurring stress from grazers, wave exposure and nutrient limitation. It is likely that many stressors act in concert with MHWs and exacerbate their effects. Here we analyzed satellite images over 60 months to assess temporal changes in abundance of surface canopies of the giant kelp Macrocystis pyrifera in the New Zealand coastal zone. The analysis encompassed the most extreme MHW on record (2017/18), across a 6° latitudinal gradient of four regions southward from the northern distributional limit of Macrocystis along mainland New Zealand. We tested the association of surface canopy cover of Macrocystis with sea surface temperature, temperature anomalies, chlorophyll-a (a proxy for nutrient availability) and water clarity (diffuse attenuation coefficient). We found a reduced cover of Macrocystis across all regions during and after the 2017/18 MHW, with least impact at the most southern region where the maximum temperatures did not exceed 18°C. There was also an important and significant interaction between temperature and water clarity, showing that temperature-induced kelp loss was greater when water clarity was poor. These results show that notable negative effects occurred across the coastal range of this foundation species and highlight the importance of studying MHW effects across latitudinal gradients and in concert with other co-occurring stressors.


2021 ◽  
Author(s):  
Alejandra Mora‐Soto ◽  
Austin Capsey ◽  
Alan M. Friedlander ◽  
Mauricio Palacios ◽  
Paul E. Brewin ◽  
...  

2021 ◽  
Author(s):  
Dieter G. Müller ◽  
Enora Gaschet ◽  
Olivier Godfroy ◽  
Josselin Gueno ◽  
Guillaume Cossard ◽  
...  

2021 ◽  
Author(s):  
Schery Umanzor ◽  
José Miguel Sandoval‐Gil ◽  
Mariana Sánchez‐Barredo ◽  
Lydia B. Ladah ◽  
Mary‐Mar Ramírez‐García ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document