Computational Investigations into Hydrogen-Atom Abstraction from Rhodium Hydride Complexes by Methyl Radicals in Aqueous Solution

2011 ◽  
Vol 2011 (31) ◽  
pp. 4901-4905 ◽  
Author(s):  
Jason M. Keith ◽  
Dan Meyerstein ◽  
Michael B. Hall
2005 ◽  
Vol 70 (11) ◽  
pp. 1769-1786 ◽  
Author(s):  
Luc A. Vannier ◽  
Chunxiang Yao ◽  
František Tureček

A computational study at correlated levels of theory is reported to address the structures and energetics of transient radicals produced by hydrogen atom abstraction from C-1, C-2, C-3, C-4, C-5, O-1, O-3, and O-5 positions in 2-deoxyribofuranose in the gas phase and in aqueous solution. In general, the carbon-centered radicals are found to be thermodynamically and kinetically more stable than the oxygen-centered ones. The most stable gas-phase radical, 2-deoxyribofuranos-5-yl (5), is produced by H-atom abstraction from C-5 and stabilized by an intramolecular hydrogen bond between the O-5 hydroxy group and O-1. The order of radical stabilities is altered in aqueous solution due to different solvation free energies. These prefer conformers that lack intramolecular hydrogen bonds and expose O-H bonds to the solvent. Carbon-centered deoxyribose radicals can undergo competitive dissociations by loss of H atoms, OH radical, or by ring cleavages that all require threshold dissociation or transition state energies >100 kJ mol-1. This points to largely non-specific dissociations of 2-deoxyribose radicals when produced by exothermic hydrogen atom abstraction from the saccharide molecule. Oxygen-centered 2-deoxyribose radicals show only marginal thermodynamic and kinetic stability and are expected to readily fragment upon formation.


1982 ◽  
Vol 35 (10) ◽  
pp. 2013 ◽  
Author(s):  
E Rizzardo ◽  
AK Serelis ◽  
DH Solomon

Cumyloxy (1-methyl-1-phenylethoxy) radicals have been generated by thermolysis (60�) of dicumyl hyponitrite in methyl methacrylate and styrene. The carbon-centred radicals formed by interaction of cumyloxyl with the respective monomers were trapped as stable adducts of 1,1,3,3-tetramethyl-isoindolin-2-yloxyl. Extensive hydrogen atom abstraction and methyl radical generation as well as double-bond addition were observed in methyl methacrylate. Styrene underwent only double-bond addition by both cumyloxy and methyl radicals. Some possible implications of these results for polymer structure are discussed. A kinetic study of the decomposition of dicumyl hyponitrite in cyclohexane at various temperatures gave k=7.7 × 1014exp(-13600/T) s-1 for the rate constant. Rate constants for the addition of cumyloxyl to methyl methacrylate (k ≈ 2 × 104 dm3 mol-1 s-1) and styrene (k≈2 × 105 dm3 mol-1 s-1) at 60�have been estimated.


2009 ◽  
Vol 15 (43) ◽  
pp. 11482-11489 ◽  
Author(s):  
Chellaiah Arunkumar ◽  
Yong-Min Lee ◽  
Jung Yoon Lee ◽  
Shunichi Fukuzumi ◽  
Wonwoo Nam

1974 ◽  
Vol 52 (15) ◽  
pp. 2840-2844 ◽  
Author(s):  
Estel Dean Sprague ◽  
Keiji Takeda ◽  
Jih Tzong Wang ◽  
Ffrancon Williams

The extent of interaction between methyl radicals and cyanide ions produced in pairs by dissociative electron capture in the two solid phases of acetonitrile has been studied by e.s.r. using CD313CN. Although no interaction is observed when the radical–anion pairs are generated by photobleaching the acetonitrile dimer radical anion in Crystal I, a very weak interaction as evidenced by an isotropic 13C hyperfine splitting of 3.4 G is found for the corresponding species produced from the acetonitrile monomer radical anion in Crystal II. The rate of hydrogen atom abstraction by the methyl radical in Crystal I is at least a factor of 10 greater than in Crystal II at the same temperature over the range 77–113 K. These results show that the weak perturbation of the methyl radical by the cyanide ion does not enhance methyl radical reactivity in hydrogen atom abstraction. Evidence from 13C hyperfine splitting measurements on [Formula: see text] indicates that the configuration of the methyl radical is planar in these radical–anion pairs. It is emphasized that quantum mechanical tunneling provides a satisfactory explanation for the low apparent activation energies, the curved Arrhenius plots, and the abnormally large deuterium isotope effects which characterize hydrogen atom abstraction reactions by methyl radicals in glassy and crystalline solids at low temperatures. Moreover, since the tunneling rate is extremely sensitive to the width of the barrier, methyl radical reactivity is expected to show a very strong dependence on the precise geometry of the reacting partners in the solid state.


Sign in / Sign up

Export Citation Format

Share Document