Two Series of Lanthanide Metal-Organic Frameworks Constructed from Crown-Ether-Like Secondary Building Units

2014 ◽  
Vol 2014 (7) ◽  
pp. 1185-1191 ◽  
Author(s):  
Hao Wang ◽  
Rong-Mei Wen ◽  
Tong-Liang Hu
2009 ◽  
Vol 9 (7) ◽  
pp. 2984-2987 ◽  
Author(s):  
Li Yan ◽  
Qi Yue ◽  
Qin-Xiang Jia ◽  
Gilles Lemercier ◽  
En-Qing Gao

2021 ◽  
Author(s):  
Yu Kitamura ◽  
Emi Terado ◽  
Zechen Zhang ◽  
Hirofumi Yoshikawa ◽  
Tomoko Inose ◽  
...  

A series of novel metal organic frameworks with lanthanide double-layer-based inorganic subnetworks (KGF-3) was synthesized assisted by machine learning. Pure KGF-3 was difficult to isolate in the initial screening experiments. The synthetic conditions were successfully optimized by extracting the dominant factors for KGF-3 synthesis using two machine-learning techniques. Cluster analysis was used to classify the obtained PXRD patterns of the products and to decide automatically whether the experiments were successful or had failed. Decision tree analysis was used to visualize the experimental results, with the factors that mainly affected the synthetic reproducibility being extracted. The water adsorption isotherm revealed that KGF-3 possesses unique hydrophilic pores, and impedance measurements demonstrated good proton conductivities (σ = 5.2 × 10<sup>−4</sup> S cm<sup>−1</sup> for KGF-3(Y)) at a high temperature (363 K) and high relative humidity (95%).<br>


2021 ◽  
Author(s):  
Yu Kitamura ◽  
Emi Terado ◽  
Zechen Zhang ◽  
Hirofumi Yoshikawa ◽  
Tomoko Inose ◽  
...  

A series of novel metal organic frameworks with lanthanide double-layer-based inorganic subnetworks (KGF-3) was synthesized assisted by machine learning. Pure KGF-3 was difficult to isolate in the initial screening experiments. The synthetic conditions were successfully optimized by extracting the dominant factors for KGF-3 synthesis using two machine-learning techniques. Cluster analysis was used to classify the obtained PXRD patterns of the products and to decide automatically whether the experiments were successful or had failed. Decision tree analysis was used to visualize the experimental results, with the factors that mainly affected the synthetic reproducibility being extracted. The water adsorption isotherm revealed that KGF-3 possesses unique hydrophilic pores, and impedance measurements demonstrated good proton conductivities (σ = 5.2 × 10<sup>−4</sup> S cm<sup>−1</sup> for KGF-3(Y)) at a high temperature (363 K) and high relative humidity (95%).<br>


Sign in / Sign up

Export Citation Format

Share Document