secondary building units
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 95)

H-INDEX

48
(FIVE YEARS 9)

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7402
Author(s):  
Katarzyna Sołtys-Brzostek ◽  
Kamil Sokołowski ◽  
Iwona Justyniak ◽  
Michał K. Leszczyński ◽  
Natalia Olejnik-Fehér ◽  
...  

Introduction of photoactive building blocks into mixed-ligand coordination polymers appears to be a promising way to produce new advanced luminescent materials. However, rational design and self-assembly of the multi-component supramolecular systems is challenging from both a conceptual and synthetic perspective. Here, we report exploratory studies that investigate the potential of [Zn(q)2]2[tBuZn(OH)]2 complex (q = deprotonated 8-hydroxyquinoline) as an organozinc precursor as well as a mixed-ligand synthetic strategy for the preparation of new luminescent coordination polymers (CPs). As a result we present three new 2D mixed-ligand Zn(II)-quinolinate coordination polymers which are based on various zinc quinolinate secondary building units interconnected by two different organic linker types, i.e., deprotonated 4,4′-oxybisbenzoic acid (H2obc) as a flexible dicarboxylate linker and/or selected bipyridines (bipy). Remarkably, using the title organozinc precursors in a combination with H2obc and 4,4′-bipyridine, a novel molecular zinc quinolinate building unit, [Zn4(q)6(bipy)2(obc)2], was obtained which self-assembled into a chain-type hydrogen-bonded network. The application of the organometallic precursor allowed for its direct reaction with the selected ligands at ambient temperature, avoiding the use of both solvothermal conditions and additional base reagents. In turn, the reaction involving Zn(NO3)2, as a classical inorganic precursor, in a combination with H2obc and bipy led to a novel 1D coordination polymer [Zn2(q)2(NO3)2(bipy)]. While the presence of H2obc was essential for the formation of this coordination polymer, this ditopic linker was not incorporated into the isolated product, which indicates its templating behavior. The reported compounds were characterized by single-crystal and powder X-ray diffraction, elemental analysis as well as UV-Vis and photoluminescence spectroscopy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Guoshuai Zhang ◽  
Haitao Han ◽  
Kaiyue Li ◽  
Hong Zhang ◽  
Wuping Liao

Abstract Three cobalt-calixarene coordination frameworks, namely, {[Co4Cl(H4TC4AS)]4(HPO3)8}4− (CIAC-253), {[Co4Cl(H4TC4AS)]4(PO4)8}12− (CIAC-254) and {[Co4Cl(H4TC4AS)]3(Ph-PO3)6}3− (CIAC-255) were obtained by solvothermal reaction of a cobalt salt, sodium p-sulfonatothiacalix[4]arene (Na4H4TC4AS) and phosphate, phosphite and phosphonate ligands. In CIAC-253 and CIAC-254, the shuttlecock-like Co4Cl-(TC4AS) secondary building units (SBUs) are bridged by HPO3 2− or PO4 3− anions into two quadrilateral frameworks while in CIAC-255, the Co4Cl-(TC4AS) SBUs are linked into a triangular framework by phenylphosphonate anions. The supramolecular interactions between the phenyl groups of phosphonate and TC4AS play a crucial role in the formation of the triangle. Magnetic measurements revealed that all the cobalt(II) centers exhibit antiferromagnetic interactions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Monica A. Gordillo ◽  
Paola A. Benavides ◽  
Kaybriana Spalding ◽  
Sourav Saha

A new electrically conducting 3D metal-organic framework (MOF) with a unique architecture was synthesized using 1,2,4,5-tetrakis-(4-carboxyphenyl)benzene (TCPB) a redox-active cis-dipyridyl-tetrathiafulvalene (Z-DPTTF) ligand. While TCPB formed Zn2(COO)4 secondary building units (SBUs), instead of connecting the Zn2-paddlewheel SBUs located in different planes and forming a traditional pillared paddlewheel MOF, the U-shaped Z-DPTTF ligands bridged the neighboring SBUs formed by the same TCPB ligand like a sine-curve along the b axis that created a new sine-MOF architecture. The pristine sine-MOF displayed an intrinsic electrical conductivity of 1 × 10−8 S/m, which surged to 5 × 10−7 S/m after I2 doping due to partial oxidation of electron rich Z-DPTTF ligands that raised the charge-carrier concentration inside the framework. However, the conductivities of the pristine and I2-treated sine-MOFs were modest possibly because of large spatial distances between the ligands that prevented π-donor/acceptor charge-transfer interactions needed for effective through-space charge movement in 3D MOFs that lack through coordination-bond charge transport pathways.


Author(s):  
Matthew J. Hurlock ◽  
Leiduan Hao ◽  
Kyle W. Kriegsman ◽  
Xiaofeng Guo ◽  
Michael O’Keeffe ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4428
Author(s):  
Chatphorn Theppitak ◽  
Suwadee Jiajaroen ◽  
Nucharee Chongboriboon ◽  
Songwuit Chanthee ◽  
Filip Kielar ◽  
...  

Two new lanthanide-based coordination polymers, [Sm2(bzz)(ben)6(H2O)3]·0.5H2O (1) and [Eu(bbz)(ben)3] (2), were synthesized and characterized. The described products were formed from in situ-generated benzoate (ben) and N’-benzoylbenzohydrazide (bbz) ligands, which were the products of transformation of originally added benzhydrazide (bzz) under hydrothermal conditions. Compound 1 exhibits a one-dimensional (1D) double-chain structure built up from the connection of the central Sm3+ ions with a mixture of bzz and ben ligands. On the other hand, 2 features a 3D network with a 4-connected (66) dia topology constructed from dinuclear [Eu2(ben)6] secondary building units and bbz linkers. High-pressure CO2 sorption studies of activated 1 show that maximum uptake increases to exceptionally high values of 376.7 cm3 g−1 (42.5 wt%) under a pressure of 50 bar at 298 K with good recyclability. Meanwhile, 2 shows a typical red emission in the solid state at room temperature with the decay lifetime of 1.2 ms.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaojing Zhou ◽  
Lili Liu ◽  
Hang Kou ◽  
Shimei Zheng ◽  
Mingjun Song ◽  
...  

A 3D supermolecular structure [Co3(L)2 (2,2′-bipy)2](DMF)3(H2O)3 1) (H3L = 4,4′,4″-nitrilotribenzoic acid) has been constructed based on H3L, and 2,2′-bipy ligands under solvothermal conditions. Compound 1 can be described as a (3, 6)-connected kgd topology with a Schläfli symbol (43)2(46.66.83) formed by [Co3(CO2)6] secondary building units. The adsorption properties of the activated sample 1a has been studied; the result shows that 1a has a high adsorption ability: the CO2 uptakes were 74 cm3·g−1 at 273 K, 50 cm3·g−1 at 298 K, the isosteric heat of adsorption (Qst) is 25.5 kJ mol−1 at zero loading, and the N2 adsorption at 77 K, 1 bar is 307 cm3 g−1. Magnetic measurements showed the existence of an antiferromagnetic exchange interaction in compound 1, besides compound 1 exhibits effective luminescent performance for Fe3+/Cr3+ and TNP.


Author(s):  
Michael Knorr ◽  
Lydie Viau ◽  
Yoann Rousselin ◽  
Marek M. Kubicki

The polymeric title compound, [Cu2Br2(C4H8S)2] n , CP1, represents an example of a two-dimensional coordination polymer resulting from reaction of CuBr with tetrahydrothiophene (THT) in MeCN solution. The two-dimensional layers consist of two different types of rhomboid-shaped dinuclear Cu(μ2-Br)2Cu secondary building units (SBUs); one with a quite loose Cu...Cu separation of 3.3348 (10) Å and a second one with a much closer intermetallic contact of 2.9044 (9) Å. These SBUs are interconnected through bridging THT ligands, in which the S atom acts as a four-electron donor bridging each Cu(μ2-Br)2Cu unit in a μ2-bonding mode. In the crystal, the layers are linked by very weak C—H...·Br hydrogen bonds with H...Br distances of 2.95 Å, thus giving rise to a three-dimensional supramolecular network.


Sign in / Sign up

Export Citation Format

Share Document