scholarly journals Discrimination of Octahedral versus Trigonal Bipyramidal Coordination Geometries of Homogeneous TiIV, VV, and MoVIAmino Triphenolate Complexes through Nitroxyl Radical Units

2016 ◽  
Vol 2016 (31) ◽  
pp. 4968-4973 ◽  
Author(s):  
Elena Badetti ◽  
Vega Lloveras ◽  
Francesco Romano ◽  
Rosalia Di Lorenzo ◽  
Jaume Veciana ◽  
...  
2014 ◽  
Vol 92 (6) ◽  
pp. 496-507 ◽  
Author(s):  
Hans Reuter ◽  
Hilko Wilberts

The syntheses and crystal structures of [(t-Bu2Sn)3O(OH)2]CO3·3MeOH, 1a, [(t-Bu2Sn)3O(OH)2]CO3·3H2O·acetone, 1b, [(t-Bu2Sn)3O(OH)2][I]2·[(t-Bu2Sn(OH)I]2·2DMSO, 1c, and [(Cy2Sn)3O(OH)2][I]2·2DMSO, 2a, all containing the trinuclear [(R2Sn)3O(OH)2]2+ ion have been described. The butterfly shape of this cation is derived from two annulated, four-membered tin–oxygen rings with a central μ3-oxygen atom and trigonal-bipyramidally coordinated tin atom both belonging to both rings and two μ2-hydroxyl groups and two outer, four-fold coordinated tin atoms. In 1a and 1b, the carbonate anions interact with the outer tin atoms of the cations as bidentate chelating ligands in the classical syn–syn coordination mode, and vice versa. In this way, both outer tin atoms expand their coordination sphere from four to five, with the consequence that bond angles and lengths within the cation are determined by the axial and equatorial position of the oxygen atoms within the trigonal-bipyramidal coordination on all three tin atoms. 1c consists of two different building units, an up to now unknown hydroxide iodide of composition [(t-Bu2Sn(OH)I]2 with hydrogen-bonded DMSO molecules and a [(t-Bu2Sn)3O(OH)2]2+ cation with one coordinated and one isolated, via hydrogen bonds connected iodine ion. The hydroxide iodine is built up of two five-fold coordinated tin atoms linked via two hydroxyl groups with exocyclic iodine atoms occupying axial positions at the trigonal-biypramidally coordinated tin atoms. The unprecedented coordination of the iodine ion to the [(t-Bu2Sn)3O(OH)2]2+ cation takes place between both outer tin atoms, resulting in a five-fold, trigonal-bipyramidal coordination at these tin atoms, too. Structural parameters within the so-formed [(t-Bu2Sn)3O(OH)2I]+ complex are very similar to those of 1a and 1b, with the exception of a significant lengthening of the tin–oxygen bonds opposite to the bridging iodine atom. 2a represents the first example of the [(R2Sn)3O(OH)2]2+ cation without R = t-butyl, so far. In the solid, it consists of two crystallographic independent [(Cy2Sn)3O(OH)2][I]2 building units, each connected to two DMSO molecules via hydrogen bonds. Both building units are very similar with respect to their conformation. Each of the iodine anions coordinates with only one of the two outer tin atoms, one in an inwards, one in an outwards to the tin-oxygen framework directed position. These tin atoms are therefore also trigonal-bipyramidally coordinated as in 1a−1c, but because of steric reasons one of the trigonal-bipyramids has changed its orientation within the tin–oxygen framework, accompanied by enormous changes of bond lengths and angles therein.


2013 ◽  
Vol 69 (12) ◽  
pp. m655-m656
Author(s):  
Wojciech Starosta ◽  
Janusz Leciejewicz

The asymmetric unit of the title compound, [Li(C8H6N2O4)(H2O)]n, comprises three Li cations, two of which are located on a twofold rotation axis, two carboxylate anions and three water molecules, of which two are situated on the twofold rotation axis being aqua ligands. Both carboxylate anions are in μ2-bridging mode. All Li ions show a trigonal–bipyramidal coordination mode; the two located in special positions are bridged throughN,O-bonding sites generating a polymeric ribbon along thec-axis direction. The Li cation in a general position creates an independent polymeric ribbon throughN,O-bonding sites of the two symmetry-related ligands; the trigonal–bipyramidal coordination is completed by an aqua ligand. In both carboxylate anions, a carboxylate and a carboxylic acid group form an intramolecular hydrogen bond. The polymeric ribbons running along [001] are interconnected by hydrogen bonds in which the water molecules act as donors and carboxylate O atoms act as acceptors, giving rise to a three-dimensional architecture.


2016 ◽  
Vol 55 (5) ◽  
pp. 2488-2498 ◽  
Author(s):  
Theresia M. M. Richter ◽  
Sylvain LeTonquesse ◽  
Nicolas S. A. Alt ◽  
Eberhard Schlücker ◽  
Rainer Niewa

1978 ◽  
Vol 33 (12) ◽  
pp. 1393-1397 ◽  
Author(s):  
R. D. Fischer ◽  
E. Klähne ◽  
J. Kopf

Abstract The first two examples of a novel series of organo-actinide complexes, [Cp3UXL] (Cp = η5 -C5H5, X = halide or pseudohalide anion, L = uncharged Lewis base), are described. The X-ray structure analysis of the system with X = NCS and L = CH3CN confirms an almost linear alignment (H3)CCNUNCS along with the coplanarity of the three Cp ring normals. The remarkable Lewis acidity of certain Cp3UX-compounds appears to be essential for the formation of oligomeric species [Cp3UX]∞ as well as for specific reactions of monomeric CP3UX.


Sign in / Sign up

Export Citation Format

Share Document