Study on suitability of laponite‐based aqueous Na 2 SO 4 solution incorporated foam as latent heat storage medium

Author(s):  
B. K. Purohit ◽  
Venkata S. Sistla
Author(s):  
Sylva Bantová ◽  
Milan Ostrý ◽  
Karel Struhala

Phase Change Materials (PCMs) are latent heat storage media with high potential of integration in building structures and technical systems. Their solid-liquid transition is commonly utilized for thermal energy storage in building applications. It also means that some kind of encapsulation is necessary. This is often solved with metal containers that also have high thermal conductivity and resistance to mechanical damage enhancing the performance these so called latent heat thermal energy storage (LHTES) systems. However selection of suitable metal is rather challenging. It depends, among other things, on the elimination of undesirable interaction between storage medium and surrounding metal. Heat storage medium must be reliably sealed in metal container especially when the storage system is integrated in systems like domestic hot water storage tanks, where PCM leaks can negatively affect human health. The aim of this study was evaluation of interaction between selected commercially available organic and inorganic PCMs and metals. The evaluation is based on the calculation of corrosion rate and use gravimetric method for determination of the weigh variations of the metal samples. Results show that aluminium is the most suitable container material with lowest mass loss and suffered only minimal visual changes on the surface after prolonged exposure to PCMs.


2014 ◽  
Vol 1041 ◽  
pp. 350-353 ◽  
Author(s):  
Tomáš Klubal ◽  
Milan Ostrý

The thermal comfort of buildings occupants depends on the physical properties of applied building materials, on the solar heat gains through the transparent part of the external envelope and the mode of heating/cooling and ventilation. Capillary radiant cooling / heating can maintain a state of indoor environment in the required temperature range in accordance with legislative framework. The paper shows possibility how to improve thermal comfort and thermal stability in summer.Presented system uses phase change materials as a latent heat storage medium for better absorption of heat. Microencapsulated phase change materials Micronal® DS 5040 X and DS 5008X were used as latent heat storage medium in combination with gypsum plaster. Activation of phase change materials is carried out by capillary tubes with cooled / heated water circuit. At Institute of Building Structures at Faculty of Civil Engineering are located two rooms for comparative measurements. There were located thermal storage modules in the experimental room. Low- temperature radiant cooling and heating with phase change materials are one of the ways to reduce energy consumption and operating cost for cooling / heating. The paper presents the results of measurements for different modes of operation of cooling and heating.


2019 ◽  
Vol 13 (3) ◽  
pp. 5653-5664
Author(s):  
M. S. M. Al-Jethelah ◽  
H. S. Dheyab ◽  
S. Khudhayer ◽  
T. K. Ibrahim ◽  
A. T. Al-Sammarraie

Latent heat storage has shown a great potential in many engineering applications. The utilization of latent heat storage has been extended from small scales to large scales of thermal engineering applications. In food industry, latent heat has been applied in food storage. Another potential application of latent heat storage is to maintain hot beverages at a reasonable drinking temperature for longer periods. In the present work, a numerical calculation was performed to investigate the impact of utilizing encapsulated phase change material PCM on the temperature of hot beverage. The PCM was encapsulated in rings inside the cup. The results showed that the encapsulated PCM reduced the coffee temperature to an acceptable temperature in shorter time. In addition, the PCM maintained the hot beverage temperature at an acceptable drinking temperature for rational time.


Author(s):  
J. Martínez-Gómez ◽  
E. Urresta ◽  
D. Gaona ◽  
G. Guerrón

Esta investigación tiene como objetivo seleccionar un material de cambio de fase (PCM) que cumplen mejor la solución del almacenamiento de energía térmica entre 200-400 ° C y reducir el costo de producción. El uso de métodos multicriterios de toma de decisiones (MCMD) para la evaluación fueron proporcionales implementados como COPRAS-G, TOPSIS y VIKOR. La ponderación de los criterios se realizó por el método AHP (proceso analítico jerárquico) y los métodos de entropía. La correlación de los resultados entre los tres métodos de clasificación ha sido desarrollada por el coeficiente de correlación de Spearman. Los resultados ilustran el mejor y la segundo mejor opción para los tres MCDM fueron NaOH y KNO3. Además, tenía valores de correlación de Spearman entre los métodos excede de 0.714.


2021 ◽  
Vol 236 ◽  
pp. 114042
Author(s):  
Tianhao Xu ◽  
Emma Nyholm Humire ◽  
Justin Ningwei Chiu ◽  
Samer Sawalha

Sign in / Sign up

Export Citation Format

Share Document