Optimal management of multi stakeholder integrated energy system considering dual incentive demand response and carbon trading mechanism

Author(s):  
Rui Wang ◽  
Shan Cheng ◽  
Xianwang Zuo ◽  
Ye Liu
Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2539
Author(s):  
Zhengjie Li ◽  
Zhisheng Zhang

At present, due to the errors of wind power, solar power and various types of load forecasting, the optimal scheduling results of the integrated energy system (IES) will be inaccurate, which will affect the economic and reliable operation of the integrated energy system. In order to solve this problem, a day-ahead and intra-day optimal scheduling model of integrated energy system considering forecasting uncertainty is proposed in this paper, which takes the minimum operation cost of the system as the target, and different processing strategies are adopted for the model. In the day-ahead time scale, according to day-ahead load forecasting, an integrated demand response (IDR) strategy is formulated to adjust the load curve, and an optimal scheduling scheme is obtained. In the intra-day time scale, the predicted value of wind power, solar power and load power are represented by fuzzy parameters to participate in the optimal scheduling of the system, and the output of units is adjusted based on the day-ahead scheduling scheme according to the day-ahead forecasting results. The simulation of specific examples shows that the integrated demand response can effectively adjust the load demand and improve the economy and reliability of the system operation. At the same time, the operation cost of the system is related to the reliability of the accurate prediction of wind power, solar power and load power. Through this model, the optimal scheduling scheme can be determined under an acceptable prediction accuracy and confidence level.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jian Wang ◽  
Ning Xie ◽  
Valentin Ilea ◽  
Cristian Bovo ◽  
Hao Xin ◽  
...  

With the development of distributed generation and demand-side response, traditional consumers are now converted into prosumers that can actively produce and consume electricity. Moreover, with the help of energy integration technique, prosumers are encouraged to form a multi-energy community (MEC), which can increase their social welfare through inside multi-energy sharing. This paper proposes a day-ahead cooperative trading mechanism in a MEC that depends on an energy hub (EH) to couple electricity, natural gas, and heat for all prosumers. The model of the traditional uncooperative local integrated energy system (ULIES) is also built as a comparison. A satisfaction-based profit distribution mechanism is set according to prosumers’ feelings about the extra cost they save or extra profit they gain in MEC compared with that in ULIES. Finally, case studies are set to analyze the utility of MEC in enlarging social welfare, after considering the effects of prosumers’ electricity usage patterns and buy-and-sell prices in retail market. The results of satisfaction-based profit distribution are also analyzed to verify that it can save the cost or increase the profit of each prosumer and EH.


Sign in / Sign up

Export Citation Format

Share Document