Modified Carbon Trading Based Low-carbon Economic Dispatch Strategy for Integrated Energy System with CCHP

Author(s):  
Yajing Li ◽  
Wenhu Tang ◽  
Qinghua Wu
Author(s):  
Xinghua Liu ◽  
Xiang Li ◽  
Jiaqiang Tian ◽  
Hui Cao

The carbon capture device can catch CO2 produced by conventional units and coupled with power-to-gas (P2G) operation provides an effective way to reduce the carbon emissions of the integrated energy system (IES). In this paper, a low-carbon economic dispatch is proposed for an integrated electricity-gas system (IEGS) considering carbon capture devices, and the carbon trading mechanism is introduced. Based on the traditional thermal power units, carbon capture devices are installed to form carbon capture power plants (CCPP). Carbon emissions are reduced from the energy supply side via capturing CO2 generated by conventional units. Detailed modeling of IEGS, CCPP, and P2G are performed, respectively. The electricity and natural gas networks security constraints are incorporated into the low-carbon economic dispatch model to minimize carbon transaction costs and system operation costs. Finally, a 4-bus power system/4-node natural gas system is used, for example, analysis. The arithmetic simulation is performed by the YALMIP toolbox of MATLAB. The total costs and CO2 emissions of the three scenarios are compared. The feasibility and validity of the proposed model are verified by the simulated results.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 426 ◽  
Author(s):  
Shengran Chen ◽  
Shengyan Wang

The integrated energy system is a vital part of distributed energy industries. In addition to this, the optimal economic dispatch model, which takes into account the complementary coordination of multienergy, is an important research topic. Considering the constraints of power balance, energy supply equipment, and energy storage equipment, a basic model of optimal economic dispatch of an integrated energy system is established. On this basis, a multiobjective function solving algorithm of NSGA-II, based on tent map chaos optimization, is proposed. The proposed model and algorithm are applied. The simulation results show that the optimal economic scheduling model of the integrated energy system established in this paper can provide a more economic system operation scheme and reduce the operation cost and risks associated with an integrated energy system. The Non-dominated Sorting Genetic Algorithm-II (NSGA-II) multiobjective function solving algorithm, based on tent map chaos optimization, has better performance and efficiency.


Author(s):  
Kai Zhang ◽  
Nan Xu ◽  
Yunpeng Ling ◽  
Bo Zhou ◽  
Yan Song

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2677
Author(s):  
Feng Li ◽  
Shirong Lu ◽  
Chunwei Cao ◽  
Jiang Feng

To “bring carbon emissions to a peak by 2030 and to be carbon-neutral by 2060”, the role of renewable energy consumption and carbon emission trading are promoted. As an important energy consumer of regional energy system, it is necessary for integrated energy system to ensure the low-carbon economic operation of the system. Combined with the responsibility of renewable energy consumption, green certificate trading mechanism, carbon emission rights trading, and China Certified Emission Reduction (CCER), a regional integrated energy system operation optimization model was proposed. The model aims to minimize the total cost of the system, which included with electric bus, thermal bus, and cold bus. Setting different scenarios for the given example, the results show that the optimized model could effectively reduce the operating costs of the system. Moreover, the results also provide an effective reference for the system’s economic and low-carbon operation.


Sign in / Sign up

Export Citation Format

Share Document