optimal modeling
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 30)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Vol 99 (12) ◽  
pp. 44-50
Author(s):  
D. V. Plotkin ◽  
T. I. Vinogradova ◽  
M. N. Reshetnikov ◽  
Yu. R. Zyuzya ◽  
M. S. Serdobintsev ◽  
...  

The objective: to create a reproducible model of chronic tuberculosis peritonitis to study pathophysiological mechanisms of its progression and to develop pathogenetically based therapy.Subjects and Methods. The study was performed using 10 male rabbits of the Chinchilla breed. The animals were administered intraperitoneal culture of Mycobacterium tuberculosis, tuberculosis peritonitis modeling was performed according to the proposed method.Results. In the course of the experiment, it was proved that all animals developed tuberculous peritonitis with lesions of the large omentum and serous integuments of internal organs. Molecular genetic tests of fragments of the omentum and peritoneum detected DNA of Mycobacterium tuberculosis.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 538
Author(s):  
Ece C. Mutlu ◽  
Ozlem Ozmen Garibay

Modeling the information of social contagion processes has recently attracted a substantial amount of interest from researchers due to its wide applicability in network science, multi-agent-systems, information science, and marketing. Unlike in biological spreading, the existence of a reinforcement effect in social contagion necessitates considering the complexity of individuals in the systems. Although many studies acknowledged the heterogeneity of the individuals in their adoption of information, there are no studies that take into account the individuals’ uncertainty during their adoption decision-making. This resulted in less than optimal modeling of social contagion dynamics in the existence of phase transition in the final adoption size versus transmission probability. We employed the Inverse Born Problem (IBP) to represent probabilistic entities as complex probability amplitudes in edge-based compartmental theory, and demonstrated that our novel approach performs better in the prediction of social contagion dynamics through extensive simulations on random regular networks.


Sign in / Sign up

Export Citation Format

Share Document