load power
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 101)

H-INDEX

22
(FIVE YEARS 6)

Author(s):  
Seokhyeon Jeong ◽  
Yejoong Kim ◽  
Yuyang Li ◽  
Inhee Lee

2021 ◽  
Vol 2087 (1) ◽  
pp. 012006
Author(s):  
Simin Liu ◽  
Yongmin Zhang ◽  
Yong Lu ◽  
Shaojie Zhang

Abstract In this experiment, the electro-explosive deposition energy in water of aluminum-magnesium welding wire model ER5356 at 100 kJ capacitive storage energy was investigated. The loop current and the load discharge voltage during the wire electrical explosion were measured using a self-integrating Roche coil and a capacitive voltage divider, respectively. The physical process of electrical explosion and the energy deposition process were delineated by the measured loop currents and load voltages. The current waveform and load voltage of the electric explosion in water of 1.2 mm-3.0 mm diameter Al-Mg wire at 100 kJ stored energy were measured; the changes of load resistance value, load power and deposition energy of the wire loaded with electric explosion were calculated. The results show that the peak circuit current and peak time point decrease and then increase with increasing diameter, and the minimum value is achieved at 1.6 mm wire diameter; the load voltage and load resistance values gradually decrease with increasing diameter; the load power and total deposited energy of discharge achieve the maximum value at 2.0 mm diameter. At 100 kJ energy storage, there is an optimal range between 1.6 mm and 2.4 mm wire diameter.


2021 ◽  
Vol 20 (5s) ◽  
pp. 1-23
Author(s):  
Keni Qiu ◽  
Nicholas Jao ◽  
Kunyu Zhou ◽  
Yongpan Liu ◽  
Jack Sampson ◽  
...  

There is an ongoing trend to increasingly offload inference tasks, such as CNNs, to edge devices in many IoT scenarios. As energy harvesting is an attractive IoT power source, recent ReRAM-based CNN accelerators have been designed for operation on harvested energy. When addressing the instability problems of harvested energy, prior optimization techniques often assume that the load is fixed, overlooking the close interactions among input power, computational load, and circuit efficiency, or adapt the dynamic load to match the just-in-time incoming power under a simple harvesting architecture with no intermediate energy storage. Targeting a more efficient harvesting architecture equipped with both energy storage and energy delivery modules, this paper is the first effort to target whole system, end-to-end efficiency for an energy harvesting ReRAM-based accelerator. First, we model the relationships among ReRAM load power, DC-DC converter efficiency, and power failure overhead. Then, a maximum computation progress tracking scheme ( MaxTracker ) is proposed to achieve a joint optimization of the whole system by tuning the load power of the ReRAM-based accelerator. Specifically, MaxTracker accommodates both continuous and intermittent computing schemes and provides dynamic ReRAM load according to harvesting scenarios. We evaluate MaxTracker over four input power scenarios, and the experimental results show average speedups of 38.4%/40.3% (up to 51.3%/84.4%), over a full activation scheme (with energy storage) and order-of-magnitude speedups over the recently proposed (energy storage-less) ResiRCA technique. Furthermore, we also explore MaxTracker in combination with the Capybara reconfigurable capacitor approach to offer more flexible tuners and thus further boost the system performance.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chun Chen ◽  
Yitong Wu ◽  
Yijia Cao ◽  
Shengpeng Liu ◽  
Qingbo Tan ◽  
...  

The intending island service restoration method is one of the core technologies of self-healing control for smart distribution systems, which aims to maximize the restoration of the out-of-service loads in the out-of-service area without faults quickly. For this reason, a topology-weighted directional traversal intending island recovery method considering the uncertainty of distributed generation sources is proposed. First, divide the network level of the power-loss feeder and calculate the interval power flow of the feeder before the fault, and obtain the power flow direction when the active and reactive power of the faulted branch is the smallest so as to determine whether the distributed generation supply in the non-faulty power-loss area can restore all load power supply. If not, to determine the island recovery plan, continue to compare the distributed generation supply and the load capacity at all levels, and give priority to recovering loads with higher importance levels and smaller network levels. The traversal of the topological authority and direction effectively reduces the island recovery time and can make full use of the distributed generation output to maximize the recovery of the non-faulty power-loss area. Taking the PG&E 69-node system as an example and using the BFGS trust region algorithm to calculate the island power flow without unbalanced nodes for verification, the results show that this method consumes less time and can restore more load power supply than the existing island recovery method, which verifies the method’s effectiveness and reasonability.


Author(s):  
Carlos Rodriguez‐Lopez ◽  
Julian Alcazar ◽  
Coral Sanchez‐Martin ◽  
Ivan Baltasar‐Fernandez ◽  
Ignacio Ara ◽  
...  

2021 ◽  
Author(s):  
Yang Cao ◽  
Haifeng Huang ◽  
Hong Zhang ◽  
Xiaolu Li ◽  
Yuzheng Peng ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4975
Author(s):  
Jacek Maciej Stankiewicz ◽  
Agnieszka Choroszucho

In the article, a wireless charging system with the use of periodically arranged planar coils is presented. The efficiency of two wireless power transfer (WPT) systems with different types of inductors, i.e., circular and square planar coils is compared, and two models are proposed: analytical and numerical. With the appropriate selection of a load resistance, it is possible to obtain either the maximum efficiency or the maximum power of a receiver. Therefore, the system is analyzed at two optimum modes of operation: with the maximum possible efficiency and with the highest power transmitted to the load. The analysis of many variants of the proposed wireless power transfer solution was performed. The aim was to check the influence of the geometry of the coils and their type (circular or square) on the efficiency of the system. Changes in the number of turns, the distance between the coils (transmit and receive) as well as frequency are also taken into account. The results obtained from analytical and numerical analysis were consistent; thus, the correctness of the adopted circuit and numerical model (with periodic boundary conditions) was confirmed. The proposed circuit model and the presented numerical approach allow for a quick estimate of the electrical parameters of the wireless power transmission system. The proposed system can be used to charge many receivers, e.g., electrical cars on a parking or several electronic devices. Based on the results, it was found that the square coils provide lower load power and efficiency than compared to circular coils in the entire frequency range and regardless of the analyzed geometry variants. The results and discussion of the multivariate analysis allow for a better understanding of the influence of the coil geometry on the charging effectiveness. They can also be valuable knowledge when designing this type of system.


Sign in / Sign up

Export Citation Format

Share Document