Enhanced hysteresis of suspended sediment transport in response to upstream damming: An example of the middle Yangtze River downstream of the Three Gorges Dam

2020 ◽  
Vol 45 (8) ◽  
pp. 1846-1859 ◽  
Author(s):  
Yiwei Lyu ◽  
Sergio Fagherazzi ◽  
Shan Zheng ◽  
Guangming Tan ◽  
Caiwen Shu
2018 ◽  
Vol 10 (11) ◽  
pp. 4093 ◽  
Author(s):  
Jilong Chen ◽  
Xinrui Fang ◽  
Zhaofei Wen ◽  
Qiao Chen ◽  
Maohua Ma ◽  
...  

Spanning the Yangtze River of China, the Three Gorges Dam (TGD) has received considerable concern worldwide with its potential impacts on the downstream side of the dam. This work investigated the spatio-temporal variations of suspended sediment concentration (SSC) at the downstream section of Yichang-to-Chenglingji from 2002 to 2015. A random forest model was developed to estimate SSC using MODIS ground reflectance products, and the spatio-temporal distributions of SSC were retrieved with this model to investigate the characteristics of water-silt variation. Our results revealed that, relatively, SSC before 2003 was evenly distributed in the downstream Yangtze River, while this spatial distribution pattern changed ce 2003 when the dam started storing water. Temporally, the SSC demonstrated a W-shaped curve of seasonal variation as one peak occurred in September and two troughs in March and November, and showed a significantly decreasing trend after three-stage impoundment. After official operation of the TGD in 2009, the SSC was reduced by over 40% than before 2003. Spatially, the most significant changes occurred in the upper Jingjiang section, where the SSC dropped by 45%. During all stages of impoundment, the water impoundment to 135 m in 2003 had the most significant impact on suspended sediment. The decreased SSC has led to emerging risks of bank failure, aggravated erosion of water front and aggressive down-cutting erosion along the downstream of the dam, as well as other ecological and environmental issues that require urgent attention by the government.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251015
Author(s):  
Guoliang Zhu ◽  
Yitian Li ◽  
Zhaohua Sun ◽  
Shinjiro Kanae

This work explores the changes in vegetation coverage and submergence time of floodplains along the middle and lower reaches of the Yangtze River (i.e., the Jingjiang River) and the relations between them. As the Three Gorges Dam has been operating for more than 10 years, the original vegetative environment has been greatly altered in this region. The two main aspects of these changes were discovered by analyzing year-end image data from remote sensing satellites using a dimidiate pixel model, based on the normalized difference vegetation index, and by calculating water level and topographic data over a distance of 360 km from 2003–2015. Given that the channels had adjusted laterally, thus exhibiting deeper and broader geometries due to the Three Gorges Dam, 11 floodplains were classified into three groups with distinctive features. The evidence shows that, the floodplains with high elevation have formed steady vegetation areas and could hardly be affected by runoff and usually occupied by humans. The low elevation group has not met the minimal threshold of submerging time for vegetation growth, and no plants were observed so far. Based on the facts summed up from the floodplains with variable elevation, days needed to spot vegetation ranges from 70 to 120 days which happened typically near 2006 and between 2008 and 2010, respectively, and a negative correlation was detected between submergence time and vegetation coverage within a certain range. Thus, floods optimized by the Three Gorges Dam have directly influenced plant growth in the floodplains and may also affect our ability to manage certain types of large floods. Our conclusions may provide a basis for establishing flood criteria to manage the floodplain vegetation and evaluating possible increases in resistance caused by high-flow flooding when these floodplains are submerged.


2019 ◽  
Vol 34 (3) ◽  
pp. 705-717
Author(s):  
Zhenkuan Su ◽  
Michelle Ho ◽  
Zhenchun Hao ◽  
Upmanu Lall ◽  
Xun Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document