normalized difference vegetation index
Recently Published Documents


TOTAL DOCUMENTS

2112
(FIVE YEARS 1250)

H-INDEX

58
(FIVE YEARS 13)

2023 ◽  
Vol 83 ◽  
Author(s):  
C. B. Alvarenga ◽  
G. S. M. Mundim ◽  
E. A. Santos ◽  
R. B. A. Gallis ◽  
R. Zampiroli ◽  
...  

Abstract Water magnetization and geoprocessing are increasingly utilized tools in weed management. Our objective was to study the influence of water magnetization on herbicide efficiency and to verify whether there is a relationship between control scores and the normalized difference vegetation index (NDVI). In the laboratory experiment, water was subjected to magnetization and evaluated with respect to four characteristics. In the field experiment, plots of Brachiaria grass were subjected to treatments in a factorial scheme (6 × 2 + 1). Six herbicidal factors (doses of glyphosate and glyphosate + 2,4-D) and the magnetization or absence of magnetization of the spray solution were evaluated and compared against the control treatment (without spraying). Weed control assessments were carried out six times. Images were obtained using an embedded multispectral camera to determine the NDVI values. Data related to water characteristics were analyzed using the t test. Weed control and NDVI data were subjected to analysis of variance and are presented in regression graphs. Dispersion analysis of NDVI data was performed according to the control scores. The magnetization process decreased the pH of the water and increased the surface tension, but it did not influence the control scores or the NDVI. As the glyphosate dose was increased, the control scores were higher and the NDVI values were lower. Magnetized water did not affect the biological efficiency of the herbicides, and there was a strong correlation between the control scores and the NDVI values.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Annie Doubleday ◽  
Catherine J. Knott ◽  
Marnie F. Hazlehurst ◽  
Alain G. Bertoni ◽  
Joel D. Kaufman ◽  
...  

Abstract Background Neighborhood greenspaces provide opportunities for increased physical activity and social interaction, and thus may reduce the risk of Type 2 diabetes. However, there is little robust research on greenspace and diabetes. In this study, we examine the longitudinal association between neighborhood greenspace and incident diabetes in the Multi-Ethnic Study of Atherosclerosis. Methods A prospective cohort study (N = 6814; 2000-2018) was conducted to examine the association between greenspace, measured as annual and high vegetation season median greenness determined by satellite (Normalized Difference Vegetation Index) within 1000 m of participant homes, and incident diabetes assessed at clinician visits, defined as a fasting glucose level of at least 126 mg/dL, use of insulin or use of hypoglycemic medication, controlling for covariates in stages. Five thousand five hundred seventy-four participants free of prevalent diabetes at baseline were included in our analysis. Results Over the study period, 886 (15.9%) participants developed diabetes. Adjusting for individual characteristics, individual and neighborhood-scale SES, additional neighborhood factors, and diabetes risk factors, we found a 21% decrease in the risk of developing diabetes per IQR increase in greenspace (HR: 0.79; 95% CI: 0.63, 0.99). Conclusions Overall, neighborhood greenspace provides a protective influence in the development of diabetes, suggesting that neighborhood-level urban planning that supports access to greenspace--along with healthy behaviors--may aid in diabetes prevention. Additional research is needed to better understand how an area’s greenness influences diabetes risk, how to better characterize greenspace exposure and usage, and future studies should focus on robust adjustment for neighborhood-level confounders.


Author(s):  
A. Malah ◽  
H. Bahi ◽  
H. Radoine ◽  
M. Maanan ◽  
H. Mastouri

Abstract. By 2050, Most of the world’s population will live in cities, this demographic explosion will lead to significant urban development at the expanse of natural land which may harm the environmental quality. Consequently, assessing and modeling the urban environmental quality (UEQ) is requisite for efficient urban sprawl control and better city planning and management. The present study proposes a methodology to model and assess the environment of the urban system by developing the urban environmental quality index (UEQI) based on remote sensing data. Five environmental indicators were derived from the Landsat OLI image namely, Modified Normalized Difference Impervious Surface Index (MNDISI), Modified Normalized Difference, Water Index (MNDWI), Normalized difference vegetation Index (NDVI), Normalized difference built-up Index (NDBI) and Soil adjusted vegetation index (SAVI). Using the Principal Component Analysis (PCA) the urban environmental quality index was computed for the 17 communes of Casablanca city. The UEQI values were spatially mapped under three classes (good, moderate, and poor). The results obtained from the analysis showed a significant difference in the term of UEQI values among the communes. In addition, the environmental quality is inadequate in communes with fewer green spaces and more impervious surfaces. The outcomes of this work can serve as an efficient tool to determine the most critical interventions to be made by the authority for current and future urban planning and land/resource management.


Author(s):  
R. Lambarki ◽  
E. Achbab ◽  
M. Maanan ◽  
H. Rhinane

Abstract. Accelerated urban growth has affected many of the planet's natural processes. In cities, most of the surface is covered with asphalt and cement, which has changed the water and air cycles. To restore the balance of urban ecosystems, cities must find the means to create green spaces in an increasingly gray world. Green spaces provide the city and its inhabitants a better living environment. This article uses Nador city as a case study area, this project consists in studying the possibility for the roofs to receive vegetation. The first axis of this project is the quantification of the current vegetation cover at ground level by calculating the Normalized Difference Vegetation Index (NDVI) based on Satellite images Landsat 8, then the classification of the LiDAR point cloud, and the generation of a digital surface model (DSM) of the urban area. This type of derived data was used as the basis for the various stages of estimating the potential plant cover at the roof level. In order to study the different possible scenarios, a set of criteria was applied, such as the minimum roof area, the inclination and the duration of the sunshine on the roof, which is calculated using the linear model of angstrom Prescott based on solar radiation. The study shows that in the most conservative scenario, 21771 suitable buildings that had to be redeveloped into green roofs, with an appropriate surface area of 369.26Ha allowing a 63,40% increase in the city's green space by compared to the current state contributing to the improvement of the quality of life and urban comfort. The average budget for the installation of green roofs in a building with a surface area of 100 m2 varies between 60000dh and 170000dh depending on the type of green roofs used, extensive or intensive. These results would enable planners and researchers in green architecture sciences to carry out more detailed planning analyzes.


2022 ◽  
Vol 12 (3) ◽  
pp. 127-138
Author(s):  
Md Sayeduzzaman Sarker ◽  
Umma Rafia Shoily ◽  
Nokibul Alam Chowdhury ◽  
Rafsun Ahmad ◽  
Afzal Ahmed

Rapid urban population growth and flourishing incomes have increased waste production in Dhaka city. A part of daily produced Municipal Solid Waste (MSW) is disposed of at Matuail sanitary landfill located within Jatrabari Thana, Dhaka. This study has analyzed the environmental impacts at and around this landfill using remote sensing techniques. The objective of this research is to develop a means of environmental monitoring at the landfill site and its surroundings through the implementation of various time-series remote sensing indices e.g., Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Modified Soil Adjusted Vegetation Index (MSAVI). LST is used to observe the Spatio-temporal pattern of temperature distribution. NDVI, SAVI, and MSAVI are the Bio-indicators and they are helpful to analyze the vegetation health condition at and around the landfill area. From the result of LST, it is observed that the average temperature of the Jatrabarithana has increased from 23.12℃ in 1993 to an optimum temperature of 35.20℃ in 2013, then it went down to 29.09℃ in 2018. The NDVI result for the study period shows that the percentages of ‘Bare Soil’ and ‘Structural Object’ have increased drastically from 10% to 41.20% and 13.30% to 31.52% respectively for these 25 years in Jatrabarithana. On the other hand, the percentages of ‘Shrub and Grassland’ and ‘Moderate Vegetation’ have decreased from 54.20% to 25.15% and 12.55% to 0% respectively. SAVI and MSAVI also show evidence of increasing the amount of bare soil and structural object and decreasing the amount of vegetation. Due to the waste stabilization process, and inappropriate management system at the Matuail landfill, along with urbanization, industrial activity, and deforestation, a harmful effect has been done to the surrounding environment. As an outcome, the temperature has risen rapidly and the amount of vegetation has declined to a significant extent. Journal of Engineering Science 12(3), 2021, 127-138


2022 ◽  
Vol 14 (2) ◽  
pp. 293
Author(s):  
Mary Ruth McDonald ◽  
Cyril Selasi Tayviah ◽  
Bruce D. Gossen

Aerial surveillance could be a useful tool for early detection and quantification of plant diseases, however, there are often confounding effects of other types of plant stress. Stemphylium leaf blight (SLB), caused by the fungus Stemphylium vesicarium, is a damaging foliar disease of onion. Studies were conducted to determine if near-infrared photographic images could be used to accurately assess SLB severity in onion research trials in the Holland Marsh in Ontario, Canada. The site was selected for its uniform soil and level topography. Aerial photographs were taken in 2015 and 2016 using an Xnite-Canon SX230NDVI with a near-infrared filter, mounted on a modified Cine Star—8 MK Heavy Lift RTF octocopter UAV. Images were taken at 15–20 m above the ground, providing an average of 0.5 cm/pixel and a field of view of 15 × 20 m. Photography and ground assessments of disease were carried out on the same day. NDVI (normalized difference vegetation index), green NDVI, chlorophyll index and plant senescence reflective index (PSRI) were calculated from the images. There were differences in SLB incidence and severity in the field plots and differences in the vegetative indices among the treatments, but there were no correlations between disease assessments and any of the indices.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 172
Author(s):  
Sara Azadi ◽  
Hojat Yazdanpanah ◽  
Mohammad Ali Nasr-Esfahani ◽  
Saeid Pourmanafi ◽  
Wouter Dorigo

The Gavkhouni wetland provides many environmental and economic benefits for the central region of Iran. In recent decades, it has completely dried up several times with substantial impacts on local ecosystems and climate. Remote sensing-based Land Surface Temperature (LST), Normalized Difference Water Index (NDWI) and Normalized Difference Vegetation Index (NDVI) in combination with in-situ data were used to investigate the trend of the Gavkhouni wetland dryness and the associated impact on the variability of local air temperature. The results indicate that the wetland has increasingly experienced drier conditions since the year 2000. The wetland was almost completely dry in 2009, 2011, 2015 and 2017. In addition, the results show that Gavkhouni wetland dryness has a significant impact on local climate, increasing the mean seasonal air temperature by ~1.6 °C and ~1 °C in spring and summer, respectively. Overall, this study shows that remote sensing imagery is a valuable source for monitoring dryness and air temperature variations in the region. Moreover, the results provide a basis for effective water allocation decisions to maintain the hydrological and ecological functionality of the Gavkhouni wetland. Considering that many factors such as latitude, cloud cover, and the direction of prevailing winds affect land surface and air temperatures, it is suggested to use a numerical climate model to improve a regional understanding of the effects of wetland dryness on the surrounding climate.


2022 ◽  
Vol 14 (2) ◽  
pp. 284
Author(s):  
Changchun Li ◽  
Weinan Chen ◽  
Yilin Wang ◽  
Yu Wang ◽  
Chunyan Ma ◽  
...  

The timely and accurate acquisition of winter wheat acreage is crucial for food security. This study investigated the feasibility of extracting the spatial distribution map of winter wheat in Henan Province by using synthetic aperture radar (SAR, Sentinel-1A) and optical (Sentinel-2) images. Firstly, the SAR images were aggregated based on the growth period of winter wheat, and the optical images were aggregated based on the moderate resolution imaging spectroradiometer normalized difference vegetation index (MODIS-NDVI) curve. Then, five spectral features, two polarization features, and four texture features were selected as feature variables. Finally, the Google Earth Engine (GEE) cloud platform was employed to extract winter wheat acreage through the random forest (RF) algorithm. The results show that: (1) aggregated images based on the growth period of winter wheat and sensor characteristics can improve the mapping accuracy and efficiency; (2) the extraction accuracy of using only SAR images was improved with the accumulation of growth period. The extraction accuracy of using the SAR images in the full growth period reached 80.1%; and (3) the identification effect of integrated images was relatively good, which makes up for the shortcomings of SAR and optical images and improves the extraction accuracy of winter wheat.


2022 ◽  
Vol 14 (2) ◽  
pp. 262
Author(s):  
Hui Guo ◽  
Xiaoyan Wang ◽  
Zecheng Guo ◽  
Siyong Chen

Snow cover is an important water source and even an Essential Climate Variable (ECV) as defined by the World Meteorological Organization (WMO). Assessing snow phenology and its driving factors in Northeast China will help with comprehensively understanding the role of snow cover in regional water cycle and climate change. This study presents spatiotemporal variations in snow phenology and the relative importance of potential drivers, including climate, geography, and the normalized difference vegetation index (NDVI), based on the MODIS snow products across Northeast China from 2001 to 2018. The results indicated that the snow cover days (SCD), snow cover onset dates (SCOD) and snow cover end dates (SCED) all showed obvious latitudinal distribution characteristics. As the latitude gradually increases, SCD becomes longer, SCOD advances and SCED delays. Overall, there is a growing tendency in SCD and a delayed trend in SCED across time. The variations in snow phenology were driven by mean temperature, followed by latitude, while precipitation, aspect and slope all had little effect on the SCD, SCOD and SCED. With decreasing temperature, the SCD and SCED showed upward trends. The mean temperature has negatively correlation with SCD and SCED and positively correlation with SCOD. With increasing latitude, the change rate of the SCD, SCOD and SCED in the whole Northeast China were 10.20 d/degree, −3.82 d/degree and 5.41 d/degree, respectively, and the change rate of snow phenology in forested areas was lower than that in nonforested areas. At the same latitude, the snow phenology for different underlying surfaces varied greatly. The correlations between the snow phenology and NDVI were mainly positive, but weak correlations accounted for a large proportion.


Irriga ◽  
2022 ◽  
Vol 1 (4) ◽  
pp. 722-729
Author(s):  
LEONCIO GONÇALVES RODRIGUES ◽  
ANA CÉLIA MAIA MEIRELES ◽  
CARLOS WAGNER OLIVEIRA

EMPREGO DO SENSORIAMENTO REMOTO PARA ANÁLISE DO USO E OCUPAÇÃO DO SOLO NO PERÍMETRO IRRIGADO VÁRZEAS DE SOUSA-PB     LEONCIO GONÇALVES RODRIGUES1; ANA CÉLIA MAIA MEIRELES2 E CARLOS WAGNER OLIVEIRA3   1Mestrando em Desenvolvimento Regional Sustentável, Universidade Federal do Cariri-UFCA, Rua Ícaro Moreira de Sousa, nº 126, Muriti, 63130-025, Crato, Ceará, Brasil, [email protected]. 2 Professora titular do Programa de pós graduação em Desenvolvimento Regional Sustentável, Universidade Federal do Cariri-UFCA, Rua Ícaro Moreira de Sousa, nº 126, Muriti, 63130-025, Crato, Ceará, Brasil, [email protected]  3 Professor titular do Programa de pós graduação em Desenvolvimento Regional Sustentável, Universidade Federal do Cariri-UFCA, Rua Ícaro Moreira de Sousa, nº 126, Muriti, 63130-025, Crato, Ceará, Brasil, [email protected]     1 RESUMO   O perímetro irrigado várzeas de Sousa (PIVAS) é um grande produtor de culturas como coco, banana, sorgo, algodão dentre outras. Tem grande importância para o desenvolvimento econômico da região do alto sertão da Paraíba. Possui características impares como a distribuição de água para todos os lotes por potencial gravitacional. Para a sustentabilidade do perímetro é necessário o monitoramento constante de suas áreas, para se poder desenvolver estratégias que auxiliam no desenvolvimento sustentável. Nesse sentido, o sensoriamento remoto é uma ferramenta ideal por permitir a obtenção rápida e precisa de informações sobre uma área, o que pode auxiliar na tomada de decisão. Partindo desse pressuposto, o objetivo deste trabalho é apresentar um conjunto de técnicas de sensoriamento que possibilitem o monitoramento de áreas irrigadas ou ambientais. Para tanto foi determinado do uso e ocupação do solo, o índice de vegetação por diferença normalizada (NDVI) e o índice de vegetação ajustado ao solo (SAVI) para o PIVAS. Onde se observou que as técnicas de sensoriamento remoto auxiliam na compreensão de áreas no espaço e tempo.   Palavras-chave: monitoramento, manejo, satélite.     RODRIGUES, L. G.; MEIRELES, A. C. M.; OLIVEIRA, C, W. USE OF REMOTE SENSING TO ANALYZE THE USE AND OCCUPANCY OF THE SOIL IN THE PERIMETER IRRIGATED VÁRZEAS DE SOUSA-PB.     2 ABSTRACT   The floodplain-irrigated perimeter of Sousa (PIVAS) is a major producer of crops such as coconut, banana, sorghum, cotton, among others. It is of great importance for the economic development of the upper wilderness region of Paraiba. It has unique characteristics such as water distribution to all lots by gravitational potential. For the sustainability of the perimeter, constant monitoring of its areas is necessary, to be able to develop strategies that help in sustainable development. In this sense, remote sensing is an ideal tool as it allows for quick and accurate obtaining information about an area, which can help in decision making. Based on this assumption, this work aims to present a set of sensing techniques that enable monitoring of irrigated or environmental areas. For this purpose, the normalized difference vegetation index (NDVI) and the soil-adjusted vegetation index (SAVI) were determined for the PIVAS. Where it was observed that remote sensing techniques help understand areas in space and time.   Keywords: monitoring, management, satellite.


Sign in / Sign up

Export Citation Format

Share Document