Causes of marine heatwaves in the East China Sea and the South Yellow Sea in three consecutive summers during 2016-2018

2020 ◽  
Author(s):  
Guan-dong Gao ◽  
Maxime Marin ◽  
Ming Feng ◽  
Baoshu Yin ◽  
Dezhou Yang ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Xueji Gu ◽  
Fang Cheng ◽  
Xiaolei Chen ◽  
Guanxiang Du ◽  
Guiling Zhang

Coastal marine systems are active regions for the production and emission of nitrous oxide (N2O), a potent greenhouse gas. Due to the inherently high variability in different coastal biogeochemical cycles, the factors and mechanisms regulating coastal N2O cycling remain poorly understood. Hydroxylamine (NH2OH), a potential precursor of N2O, has received less attention than other compounds in the coastal areas. Here, we present the spatial distribution of N2O and the first reported NH2OH distribution in the South Yellow Sea (SYS) and the East China Sea (ECS) between March and April 2017. The surface N2O concentrations in the SYS and the ECS varied from 5.9 to 11.3 nmol L–1 (average of 8.4 ± 1.4 nmol L–1) and were characterized by offshore and north–south decreasing gradients. NH2OH showed patchy characteristics and was highly variable, fluctuating between undetectable to 16.4 nmol L–1. We found no apparent covariation between N2O and NH2OH, suggesting the NH2OH pathway, i.e., nitrification (ammonium oxidation), was not the only process affecting N2O production here. The high NH2OH values co-occurred with the greatest chlorophyll-a and oxygen levels in the nearshore region, along with the relationships between NO2–, NO3–, and NH2OH, indicating that a “fresh” nitrifying system, favoring the production and accumulation of NH2OH, was established during the phytoplankton bloom. The high N2O concentrations were not observed in the nearshore. Based on the correlations of the excess N2O (ΔN2O) and apparent oxygen utilization, as well as ΔN2O vs. NO3–, we concluded that the N2O on the continental shelf was mainly derived from nitrification and nitrifier denitrification. Sea-to-air fluxes of N2O varied from −12.4 to 6.6 μmol m–2 d–1 (−3.8 ± 3.7 μmol m–2 d–1) using the Nightingale et al. (2000) formula and −13.3 to 6.9 μmol m–2 d–1 (−3.9 ± 3.9 μmol m–2 d–1) using the Wanninkhof (2014) formula, which corresponds to 75–112% in saturation, suggesting that the SYS and the ECS acted overall as a sink of atmospheric N2O in early spring, with the strength weakening. Our results reveal the factors and potential mechanisms controlling the production and accumulation of NH2OH and N2O in the SYS and the ECS during early spring.


Hydrobiologia ◽  
2006 ◽  
Vol 568 (1) ◽  
pp. 245-253 ◽  
Author(s):  
DanLing Tang ◽  
BaoPing Di ◽  
Guifeng Wei ◽  
I-Hsun Ni ◽  
Im Sang Oh ◽  
...  

2017 ◽  
Vol 80 (11) ◽  
pp. 1882-1889 ◽  
Author(s):  
Feng Han ◽  
Run-Run Gu ◽  
Xiao-Sheng Shen ◽  
Yuan-Ge Chen ◽  
Liang-Liang Tian ◽  
...  

ABSTRACT This study was conducted to monitor the densities of total and pathogenic Vibrio parahaemolyticus in 300 samples of nine shellfish species harvested from the coasts of the South Yellow Sea and the East China Sea (N 23° to 34°, E 116° to 124°), People's Republic of China, between May and October 2015. Total V. parahaemolyticus densities were measured, and V. parahaemolyticus isolates were biochemically identified with probes for the thermostable direct hemolysin gene (tdh) and the thermostable direct hemolysin–related hemolysin gene (trh). We found that 202 of the 300 samples were positive for V. parahaemolyticus from all the sites: 58 of the 100 samples from the Fujian province, 71 of the 100 samples from the Zhejiang province, and 73 of the 100 samples from the Jiangsu province. In most (170) of the 300 samples, V. parahaemolyticus densities were 0.3 to 10 most probable number (MPN)/g; five lots exceeded 110 MPN/g, and two lots were estimated at 110 MPN/g. Among the 202 V. parahaemolyticus strains, only one was trh positive. Densities of V. parahaemolyticus in these shellfish were temperature dependent, with highest densities in June and July. Among the nine mollusk species, V. parahaemolyticus was most abundant in the agemaki clam (Sinonovacula constricta). The highest and lowest V. parahaemolyticus prevalences were found in oriental cyclina (Cyclina sinensis, 93.8%) and mussels (Mytilus edulis, 28.1%), respectively. Overall, although V. parahaemolyticus is widely distributed in marine environments, the density of V. parahaemolyticus was low and the prevalence of the main virulence factor was very low in shellfish along the coasts of the South Yellow Sea and East China Sea, which is important from a public health perspective. Data presented here will be useful for correlational research and can be utilized for developing risk management plans that establish food safety guidelines for V. parahaemolyticus in Chinese shellfish.


Sign in / Sign up

Export Citation Format

Share Document