scholarly journals 14-year acceleration along the Japan trench and the Sagami trough

2020 ◽  
Author(s):  
Lou Marill ◽  
David Marsan ◽  
Anne Socquet ◽  
Mathilde Radiguet ◽  
Nathalie Cotte ◽  
...  
Keyword(s):  
2020 ◽  
Author(s):  
Takuya Nishimura

<p>The Kanto region, central Japan situated in the complex tectonic region where two oceanic plates subducts from the Japan trench and Sagami trough. Although many previous studies clarified repeated Mw~6.6 Slow Slip Events (SSEs) with a duration of a week in an offshore region of the Boso Peninsula along the Sagami trough, the number of the detected SSEs are limited and overall activity of SSEs have not been fully understood in these regions. We, here, applied our SSE detection in these regions to the whole available GNSS dataset for a quarter century spanning from 1994 to 2019 and clarify the relation between SSE and tremor distribution.</p><p>We use daily coordinates at 291 GNSS stations using a precise point positioning strategy of the GIPSY 6.4 software. We apply the method of Nishimura et al. (2013) and Nishimura (2014) to detect a jump associated with short-term SSEs in GNSS time-series and estimate their fault models from observed displacements. A rectangular fault on the Philippine Sea or the Pacific plates is assumed for each SSE. The stacking of GNSS time-series based on the displacement predicted by the fault model [Miyaoka and Yokota, 2012] enable us to estimate duration of SSEs.</p><p>  We detected ≥ 150 possible SSEs along both the Japan trench and Sagami trough but we here focus on SSEs along the southernmost part of the Japan trench. Total slip distribution of the detected possible SSEs shows that large slip (≥ 0.3 m) is limited near the trench. A comparison with low-frequency tremors (LFTs) along the Japan trench (Nishikawa et al., 2019) suggests SSEs occur in the same depth range (10-20 km) of LFTs but their distribution is rather complimentary whereas a minor tremor activity exists at the edge of the SSE total slip. This complimentary distribution is contrast to overlapping distribution of SSEs and LFTs observed in a deep episodic and tremor region in the other subduction zones including southwest Japan. Another distinctive feature is that SSEs continuously occur from the trench to a depth of ~60 km only at ~ 35.5ºN. Because the subducted seamounts locate at this latitude, geometry of plate interface may control a genesis of SSEs in these regions.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin-Oh Park ◽  
Naoto Takahata ◽  
Ehsan Jamali Hondori ◽  
Asuka Yamaguchi ◽  
Takanori Kagoshima ◽  
...  

AbstractPlate bending-related normal faults (i.e. bend-faults) develop at the outer trench-slope of the oceanic plate incoming into the subduction zone. Numerous geophysical studies and numerical simulations suggest that bend-faults play a key role by providing pathways for seawater to flow into the oceanic crust and the upper mantle, thereby promoting hydration of the oceanic plate. However, deep penetration of seawater along bend-faults remains controversial because fluids that have percolated down into the mantle are difficult to detect. This report presents anomalously high helium isotope (3He/4He) ratios in sediment pore water and seismic reflection data which suggest fluid infiltration into the upper mantle and subsequent outflow through bend-faults across the outer slope of the Japan trench. The 3He/4He and 4He/20Ne ratios at sites near-trench bend-faults, which are close to the isotopic ratios of bottom seawater, are almost constant with depth, supporting local seawater inflow. Our findings provide the first reported evidence for a potentially large-scale active hydrothermal circulation system through bend-faults across the Moho (crust-mantle boundary) in and out of the oceanic lithospheric mantle.


Author(s):  
Ehsan Jamali Hondori ◽  
Chen Guo ◽  
Hitoshi Mikada ◽  
Jin-Oh Park

AbstractFull-waveform inversion (FWI) of limited-offset marine seismic data is a challenging task due to the lack of refracted energy and diving waves from the shallow sediments, which are fundamentally required to update the long-wavelength background velocity model in a tomographic fashion. When these events are absent, a reliable initial velocity model is necessary to ensure that the observed and simulated waveforms kinematically fit within an error of less than half a wavelength to protect the FWI iterative local optimization scheme from cycle skipping. We use a migration-based velocity analysis (MVA) method, including a combination of the layer-stripping approach and iterations of Kirchhoff prestack depth migration (KPSDM), to build an accurate initial velocity model for the FWI application on 2D seismic data with a maximum offset of 5.8 km. The data are acquired in the Japan Trench subduction zone, and we focus on the area where the shallow sediments overlying a highly reflective basement on top of the Cretaceous erosional unconformity are severely faulted and deformed. Despite the limited offsets available in the seismic data, our carefully designed workflow for data preconditioning, initial model building, and waveform inversion provides a velocity model that could improve the depth images down to almost 3.5 km. We present several quality control measures to assess the reliability of the resulting FWI model, including ray path illuminations, sensitivity kernels, reverse time migration (RTM) images, and KPSDM common image gathers. A direct comparison between the FWI and MVA velocity profiles reveals a sharp boundary at the Cretaceous basement interface, a feature that could not be observed in the MVA velocity model. The normal faults caused by the basal erosion of the upper plate in the study area reach the seafloor with evident subsidence of the shallow strata, implying that the faults are active.


1993 ◽  
Vol 111 (1-2) ◽  
pp. 1-6 ◽  
Author(s):  
Y. Ogawa ◽  
K. Kobayashi
Keyword(s):  

1985 ◽  
Vol 112 (1-4) ◽  
pp. 155-191 ◽  
Author(s):  
K. Suyehiro ◽  
T. Kanazawa ◽  
A. Nishizawa ◽  
H. Shimamura

Sign in / Sign up

Export Citation Format

Share Document