japan trench
Recently Published Documents


TOTAL DOCUMENTS

413
(FIVE YEARS 88)

H-INDEX

42
(FIVE YEARS 5)

2022 ◽  
Vol 578 ◽  
pp. 117306
Author(s):  
Keisuke Yoshida ◽  
Naoki Uchida ◽  
Hisahiko Kubo ◽  
Ryota Takagi ◽  
Shiqing Xu

2021 ◽  
Author(s):  
Ritsuko S. Matsu'ura ◽  
Akinori Hashima ◽  
Takeo Ishibe

Abstract In the eastern margin of the Japan Sea, off the west coast of Tohoku district, the seismicity increased right after the M9 megathrust event off the east coast of the Tohoku district on March 11, 2011. Four months later, the seismicity decreased to the half level of that before the M9 event. Such quantitative study was done by the point-process model selection with AIC. The decrease lasted for eight years until an M6.7 event occurred within the area in 2019. When we compare the seismicity change between before and after the M9 event, with the post seismic change of the maximum shear stress obtained by the viscoelastic simulation for a thousand years after the M9 event, we can estimate a loading rate of the shear stress in the area before the M9 as 24 kPa/y. For the term after the M9 event, the rate is a half of it; 12 kPa/y. When we assume the whole dilatation change due to the M9 event had been canceled by the time of the M6.7, the increasing rate of the mean stress after the M9 event is 21 kPa/y at most. When we will be able to use JMA catalog for 2020 or later years, we can obtain the seismicity level after the M6.7 quantitatively, and we will be able to narrow down this estimation.


Author(s):  
Shinji Yoneshima ◽  
Kimihiro Mochizuki

ABSTRACT An efficient event-location workflow is highly desired to analyze large numbers of local earthquakes recorded by ocean-bottom seismometers (OBSs) in subduction zones. The present study proposes a migration-based event-location approach for evaluating OBS records to examine local subduction-zone earthquakes. This approach can significantly reduce the amount of manual time picks compared with conventional methods. The event-location workflow was designed to detect arrival onsets of both P and S phases. Synthetic tests have shown that the proposed migration-based event-location method is robust against different types of noise, such as environmental noise and local spike noise. This workflow was then applied to real OBS data in the off-Ibaraki region at the southern end of the Japan trench. The results show that this approach is applicable to real data from subduction-zone events: It gives reasonable agreement with manual time picks for both P and S waves and reasonable error bars, and it demonstrates a clear down-dip trend of seismicity. The results also show fair agreement with event distributions from previous studies of the off-Ibaraki region. This proposed workflow can be used to examine the seismicity of local earthquakes around the subduction zone using OBSs. This approach is especially effective when the seismicity is high and/or in cases in which long-term OBS monitoring has recorded a large number of events.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshitaka Baba ◽  
Naotaka Chikasada ◽  
Kentaro Imai ◽  
Yuichiro Tanioka ◽  
Shuichi Kodaira

AbstractAlthough tsunamis are dispersive water waves, hazard maps for earthquake-generated tsunamis neglect dispersive effects because the spatial dimensions of tsunamis are much greater than the water depth, and dispersive effects are generally small. Furthermore, calculations that include non-dispersive effects tend to predict higher tsunamis than ones that include dispersive effects. Although non-dispersive models may overestimate the tsunami height, this conservative approach is acceptable in disaster management, where the goal is to save lives and protect property. However, we demonstrate that offshore frequency dispersion amplifies tsunamis caused by outer-rise earthquakes, which displace the ocean bottom downward in a narrow area, generating a dispersive short-wavelength and pulling-dominant (water withdrawn) tsunami. We compared observational evidence and calculations of tsunami for a 1933 Mw 8.3 outer-rise earthquake along the Japan Trench. Dispersive (Boussinesq) calculations predicted significant frequency dispersion in the 1933 tsunami. The dispersive tsunami deformation offshore produced tsunami inundation heights that were about 10% larger than those predicted by non-dispersive (long-wave) calculations. The dispersive tsunami calculations simulated the observed tsunami inundation heights better than did the non-dispersive tsunami calculations. Contrary to conventional practice, we conclude that dispersive calculations are essential when preparing deterministic hazard maps for outer-rise tsunamis.


Author(s):  
Lou Marill ◽  
David Marsan ◽  
Anne Socquet ◽  
Mathilde Radiguet ◽  
Nathalie Cotte ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Yusuke Yokota ◽  
Tadashi Ishikawa ◽  
Sun-ichi Watanabe ◽  
Yuto Nakamura

Abstract The GNSS-A technique is an observation method that can detect seafloor crustal deformations with centimeter level accuracy. The GNSS-A seafloor geodetic observation array operated by the Japan Coast Guard, called SGO-A, has been constructed near the Japan Islands along the Nankai Trough and the Japan Trench. This observation array has detected several earthquakes’ displacements and episodic slow crustal deformation. To compare the detection results of SGO-A with other observation networks and expand the SGO-A distribution, it is necessary to correctly understand its detection capability. In this paper, the capabilities of current GNSS-A (frequency: f = 4–6 times/year, position accuracy: σ (standard deviation) = 1.5 cm) to detect a crustal deformation rate only, an event only, and crustal deformation rate and event together were arranged by numerical simulations. Results suggested the following features: when it is known that there is no event, the 95% confidence level (CL) for the estimation of crustal deformation rate with 4-year observation is about 0.5–0.8 cm/year; when the deformation rate is known, a signal of about 3.0 cm can be detected by observations of about 4 times before and after the event. When the deformation rate and the event are detected together, to keep the false positive low (about 0.05), the false negative becomes high (about 0.2–0.7 for detecting a signal of 4.5–6.0 cm). The determined rate and event variations are approximately 1.8 cm/year (95%CL) and 1.5 cm (standard deviation), respectively. We also examined the detection capability for higher frequency and accuracy, to examine how the detection capability improves by technological advancements in the future. Additionally, we calculated the spatial range of event detectability using the determined values of detection sensitivity. Each seafloor site can detect a slip event larger than 0.1 m scale within about 50 km radius. A subseafloor slip event smaller than about 1 m at the distance of 100 km or more from the land can often be detected only on the seafloor observation array.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Shun-ichi Watanabe ◽  
Tadashi Ishikawa ◽  
Yuto Nakamura ◽  
Yusuke Yokota

AbstractInvestigations of the co- and postseismic processes of the 2011 Tohoku-oki earthquake provide essential information on the seismic cycle in the Japan Trench. Although almost all of the source region lies beneath the seafloor, recent seafloor geophysical instruments have enabled to detect the near-field signals of both the coseismic rupture and the postseismic stress relaxation phenomena. Annual-scale seafloor geodesy contributed to refining the postseismic deformation models, specifically to the incorporation of viscoelastic effects. However, because of the insufficiency in the spatial coverage and observation period of seafloor geodetic observations, no consensus on crustal deformation models has been reached, especially on the along-strike extent of the main rupture, even for the coseismic process. To decompose the postseismic transient processes in and around the source region, i.e., viscoelastic relaxation and afterslip, long-term postseismic geodetic observations on the seafloor play an essential role. Here, from decadal seafloor geodetic data, we provide empirical evidence for offshore aseismic afterslip on the rupture edges that had almost decayed within 2–3 year. The afterslip regions are considered to have stopped the north–south rupture propagation due to their velocity strengthening frictional properties. In the southern source region (~ 37° N), despite not being resolved by coseismic geodetic data, shallow tsunamigenic slip near the trench is inferred from postseismic seafloor geodesy as a subsequent viscoelastic deformation causing persistent seafloor subsidence at a geodetic site off-Fukushima. After a decade from the earthquake, the long-term viscoelastic relaxation process in the oceanic asthenosphere is currently in progress and is still dominant not only in the rupture area, but also in the off-Fukushima region.


Sign in / Sign up

Export Citation Format

Share Document