scholarly journals Examining the role of flare-driven D-region electron density enhancement on Doppler Flash

2020 ◽  
Author(s):  
Shibaji Chakraborty ◽  
Liying Qian ◽  
J. Michael Ruohoniemi ◽  
Joseph Baker ◽  
Joseph McInerney
1994 ◽  
Vol 12 (10/11) ◽  
pp. 1085-1090 ◽  
Author(s):  
A. V. Pavlov

Abstract. In this paper we present the results of a study of the effect of vibrationally excited oxygen, O*2, and nitrogen, N*2, on the electron density, Ne, and the electron temperature, Te, in the D and E regions. The sources of O*2 are O-atom recombination, the photodissociation of O3, and the reaction of O3 with O at D region altitudes. The first calculations of O*2( j) number densities, Nj, are obtained by solving continuity equations for the models of harmonic and anharmonic oscillator energy levels, j=1-22. It is found that day time values of Nj are less than nighttime values. We also show that the photoionization of O*2 ( j ≥ 11) by Lα-radiation has no influence on the D region Ne. In the nighttime D region the photoionization O*2 ( j ≥ 11) by scattered Lα-radiation can be a new source of O+2. We show that the N*2 and O*2 de-excitation effect on the electron temperature is small in the E region of the ionosphere and cannot explain experimentally observed higher electron temperatures.


1981 ◽  
Vol 64 (11) ◽  
pp. 68-74
Author(s):  
Isamu Nagano ◽  
Masayoshi Mambo ◽  
Tetsuo Fukami ◽  
Koji Namba ◽  
Iwane Kimura

2017 ◽  
Vol 28 (4) ◽  
pp. 759-764 ◽  
Author(s):  
Chen-Guang Wang ◽  
Zhi-Hai Cheng ◽  
Xiao-Hui Qiu ◽  
Wei Ji

2020 ◽  
Author(s):  
Morris B. Cohen ◽  
Marc Alexander Higginson-Rollins
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Caitano L. da Silva ◽  
Sophia D. Salazar ◽  
Christiano G. M. Brum ◽  
Pedrina Terra

AbstractOptical observations of transient luminous events and remote-sensing of the lower ionosphere with low-frequency radio waves have demonstrated that thunderstorms and lightning can have substantial impacts in the nighttime ionospheric D region. However, it remains a challenge to quantify such effects in the daytime lower ionosphere. The wealth of electron density data acquired over the years by the Arecibo Observatory incoherent scatter radar (ISR) with high vertical spatial resolution (300-m in the present study), combined with its tropical location in a region of high lightning activity, indicate a potentially transformative pathway to address this issue. Through a systematic survey, we show that daytime sudden electron density changes registered by Arecibo’s ISR during thunderstorm times are on average different than the ones happening during fair weather conditions (driven by other external factors). These changes typically correspond to electron density depletions in the D and E region. The survey also shows that these disturbances are different than the ones associated with solar flares, which tend to have longer duration and most often correspond to an increase in the local electron density content.


2012 ◽  
Vol 117 (A11) ◽  
pp. n/a-n/a ◽  
Author(s):  
Ajeet K. Maurya ◽  
B. Veenadhari ◽  
Rajesh Singh ◽  
Sushil Kumar ◽  
M. B. Cohen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document