scholarly journals Fluid migration before and during slow earthquakes in the shallow Nankai subduction zone

2021 ◽  
Author(s):  
Takashi Tonegawa ◽  
Shunsuke Takemura ◽  
Suguru Yabe ◽  
Kiyoshi Yomogida
2020 ◽  
Vol 222 (3) ◽  
pp. 1542-1554
Author(s):  
Takashi Tonegawa ◽  
Yusuke Yamashita ◽  
Tsutomu Takahashi ◽  
Masanao Shinohara ◽  
Yasushi Ishihara ◽  
...  

SUMMARY Shallow very low frequency earthquakes (sVLFEs) have occurred recurrently at the shallow plate interface of the Hyuga-nada region of the western Nankai subduction zone, Japan. Although the locations of sVLFE epicentres have been determined using land-based seismic records with moderate accuracy, it is necessary to determine their locations more precisely to explore the relationship between sVLFEs and other shallow slow earthquakes and examine the structural factors that may control sVLFE activity. Here, we identified sVLFE epicentres using seismic records obtained from temporarily deployed ocean bottom seismometers (OBSs) in the Hyuga-nada region. Seismic observations involved the deployment of 5–13 OBSs for approximately 1 yr, with deployments conducted three times during 2014–2016 each time with changing OBS numbers and array distribution. As a result, one sVLFE episode, containing successive Rayleigh wave pulses with slow velocities due to marine sediments, could be detected at a frequency band of 0.1–0.15 Hz per observation, resulting in a total of three episodes. Rayleigh wave amplitudes of ordinary earthquakes in the continuous records were suppressed using earthquake catalogues. We estimated the dispersion curve for the Rayleigh wave group velocity for each array, which represented the averaged group velocity within the array, using coda interferometry, and applied an envelope correlation method (ECM) using the group velocities to continuous records. These processing provided sVLFE epicentres with horizontal distance errors of <5 km. Our results showed that sVLFEs depths, which were inferred from the contour line of the top of the Phillipine Sea Plate, had increased from <10 km to 10–15 km in the region of the subducted Kyusyu-Palau Ridge (KPR). It was also apparent that migration of sVLFE epicentres occurred in 2015 from a depth of 15 km to shallower depths along the northern margin of the subducted KPR. These results identified the subducted KPR as a structural factor controlling the excitation conditions of sVLFE activities.


2014 ◽  
Vol 119 (10) ◽  
pp. 7805-7822 ◽  
Author(s):  
Tsutomu Takahashi ◽  
Koichiro Obana ◽  
Yojiro Yamamoto ◽  
Ayako Nakanishi ◽  
Shuichi Kodaira ◽  
...  

2007 ◽  
Vol 59 (10) ◽  
pp. 1073-1082 ◽  
Author(s):  
Takao Tabei ◽  
Mari Adachi ◽  
Shin’ichi Miyazaki ◽  
Tsuyoshi Watanabe ◽  
Sayomasa Kato

2011 ◽  
Vol 12 (10) ◽  
pp. n/a-n/a ◽  
Author(s):  
Hideki Hamamoto ◽  
Makoto Yamano ◽  
Shusaku Goto ◽  
Masataka Kinoshita ◽  
Keiko Fujino ◽  
...  

2018 ◽  
Vol 123 (2) ◽  
pp. 1559-1575 ◽  
Author(s):  
J. Maury ◽  
S. Ide ◽  
V. M. Cruz-Atienza ◽  
V. Kostoglodov

2011 ◽  
Vol 38 (19) ◽  
pp. n/a-n/a ◽  
Author(s):  
Akito Tsutsumi ◽  
Olivier Fabbri ◽  
Anne Marie Karpoff ◽  
Kohtaro Ujiie ◽  
Atsushi Tsujimoto

Sign in / Sign up

Export Citation Format

Share Document