scholarly journals Preferential Alignment and Heterogeneous Distribution of Non-spherical Swimmers Near Lagrangian Coherent Structures

2021 ◽  
Author(s):  
Xinyu Si ◽  
Lei Fang
Author(s):  
Anusmriti Ghosh ◽  
Kabir Suara ◽  
Scott W. McCue ◽  
Yingying Yu ◽  
Tarmo Soomere ◽  
...  

Author(s):  
Francesco Enrile ◽  
Giovanni Besio ◽  
Marcello G. Magaldi ◽  
Carlo Mantovani ◽  
Simone Cosoli ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alberto Baudena ◽  
Enrico Ser-Giacomi ◽  
Donatella D’Onofrio ◽  
Xavier Capet ◽  
Cedric Cotté ◽  
...  

AbstractOceanic frontal zones have been shown to deeply influence the distribution of primary producers and, at the other extreme of the trophic web, top predators. However, the relationship between these structures and intermediate trophic levels is much more obscure. In this paper we address this knowledge gap by comparing acoustic measurements of mesopelagic fish concentrations to satellite-derived fine-scale Lagrangian Coherent Structures in the Indian sector of the Southern Ocean. First, we demonstrate that higher fish concentrations occur more frequently in correspondence with strong Lagrangian Coherent Structures. Secondly, we illustrate that, while increased fish densities are more likely to be observed over these structures, the presence of a fine-scale feature does not imply a concomitant fish accumulation, as other factors affect fish distribution. Thirdly, we show that, when only chlorophyll-rich waters are considered, front intensity modulates significantly more the local fish concentration. Finally, we discuss a model representing fish movement along Lagrangian features, specifically built for mid-trophic levels. Its results, obtained with realistic parameters, are qualitatively consistent with the observations and the spatio-temporal scales analysed. Overall, these findings may help to integrate intermediate trophic levels in trophic models, which can ultimately support management and conservation policies.


Author(s):  
S. Datta‐Barua ◽  
N. Pedatella ◽  
K. R. Greer ◽  
N. Wang ◽  
L. Nutter ◽  
...  

Author(s):  
Amirhossein Arzani ◽  
Shawn C. Shadden

Abdominal aortic aneurysms (AAA) are characterized by disturbed flow patterns, low and oscillatory wall shear stress with high gradients, increased particle residence time, and mild turbulence. Diameter is the most common metric for rupture prediction, although this metric can be unreliable. We hypothesize that understanding the flow topology and mixing inside AAA could provide useful insight into mechanisms of aneurysm growth. AAA morphology has high variability, as with AAA hemodynamics, and therefore we consider patient-specific analyses over several small to medium sized AAAs. Vortical patterns dominate AAA hemodynamics and traditional analyses based on the Eulerian fields (e.g. velocity) fail to convey the complex flow structures. The computation of finite-time Lyapunov exponent (FTLE) fields and underlying Lagrangian coherent structures (LCS) help reveal a Lagrangian template for quantifying the flow [1].


Sign in / Sign up

Export Citation Format

Share Document