scholarly journals Using Sediment Texture to Estimate Infiltration Rates at a Managed Aquifer Recharge Site

2021 ◽  
Author(s):  
Raymond J Hess ◽  
Jennifer Lee Pensky ◽  
Andrew T Fisher
2020 ◽  
Vol 34 (18) ◽  
pp. 3807-3823
Author(s):  
Sayantan Samanta ◽  
Zhuping Sheng ◽  
Clyde L. Munster ◽  
Emmanuel Van Houtte

2016 ◽  
Author(s):  
Yonatan Ganot ◽  
Ran Holtzman ◽  
Noam Weisbrod ◽  
Ido Nitzan ◽  
Yoram Katz ◽  
...  

Abstract. We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors and observation wells. During a month (January 2015) of continuous intensive MAR (2.45 · 106 m3 discharged to a 10.7 hectare area), groundwater level has risen by 17 m attaining full connection with the pond, while average infiltration rates declined by almost 2 orders of magnitude (from ~ 11 to ~ 0.4 m d−1). This reduction can be explained solely by the lithology of the unsaturated zone that includes relatively low-permeability sediments, whereas clogging processes at pond-surface – abundant in many MAR operations – are negated by the high-quality desalinated seawater or negligible compared to the low-permeability layers. Recharge during infiltration was estimated reasonably well by simple analytical models, whereas a numerical model was used for estimating groundwater recharge after the end of infiltration. It was found that a calibrated numerical model with a one-dimensional representative sediment profile is able to capture MAR dynamics, including temporal reduction of infiltration rates, drainage and groundwater recharge. Measured infiltration rates of an independent MAR event (January 2016) fitted well to those calculated by the calibrated numerical model, showing the model validity. The successful quantification methodologies of the temporal groundwater recharge are useful for MAR practitioners and can serve as an input for groundwater flow models.


2017 ◽  
Vol 21 (9) ◽  
pp. 4479-4493 ◽  
Author(s):  
Yonatan Ganot ◽  
Ran Holtzman ◽  
Noam Weisbrod ◽  
Ido Nitzan ◽  
Yoram Katz ◽  
...  

Abstract. We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors, and observation wells. During a month (January 2015) of continuous intensive MAR (2.45  ×  106 m3 discharged to a 10.7 ha area), groundwater level has risen by 17 m attaining full connection with the pond, while average infiltration rates declined by almost 2 orders of magnitude (from  ∼  11 to  ∼  0.4 m d−1). This reduction can be explained solely by the lithology of the unsaturated zone that includes relatively low-permeability sediments. Clogging processes at the pond-surface – abundant in many MAR operations – are negated by the high-quality desalinated seawater (turbidity  ∼  0.2 NTU, total dissolved solids  ∼  120 mg L−1) or negligible compared to the low-permeability layers. Recharge during infiltration was estimated reasonably well by simple analytical models, whereas a numerical model was used for estimating groundwater recharge after the end of infiltration. It was found that a calibrated numerical model with a one-dimensional representative sediment profile is able to capture MAR dynamics, including temporal reduction of infiltration rates, drainage and groundwater recharge. Measured infiltration rates of an independent MAR event (January 2016) fitted well to those calculated by the calibrated numerical model, showing the model validity. The successful quantification methodologies of the temporal groundwater recharge are useful for MAR practitioners and can serve as an input for groundwater flow models.


Ground Water ◽  
2016 ◽  
Vol 54 (6) ◽  
pp. 818-829 ◽  
Author(s):  
Chloe Mawer ◽  
Andrew Parsekian ◽  
Adam Pidlisecky ◽  
Rosemary Knight

2018 ◽  
Vol 2018 (9) ◽  
pp. 4639-4645
Author(s):  
Troy Walker ◽  
Andrew Newbold ◽  
Lauren Zuravnsky ◽  
Charles Bott ◽  
Germano Salazar-Benites ◽  
...  

2018 ◽  
Vol 2018 (9) ◽  
pp. 4635-4638
Author(s):  
Tyler Nading ◽  
Larry Schimmoller ◽  
Germano Salazar-Benites ◽  
Charles Bott ◽  
Jamie Mitchell ◽  
...  

2021 ◽  
Vol 246 ◽  
pp. 106659
Author(s):  
Sunil Kumar Jha ◽  
Vinay Kumar Mishra ◽  
Chhedi Lal Verma ◽  
Navneet Sharma ◽  
Alok Kumar Sikka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document